Datasets:
Dataset Viewer (First 5GB)
image
imagewidth (px) 224
224
| class_id
stringclasses 268
values | split
stringclasses 1
value | filename
stringlengths 16
21
|
|---|---|---|---|
n01955084
|
train
|
n01955084_8575.JPEG
|
|
n01955084
|
train
|
n01955084_875.JPEG
|
|
n01955084
|
train
|
n01955084_15274.JPEG
|
|
n01955084
|
train
|
n01955084_10515.JPEG
|
|
n01955084
|
train
|
n01955084_3037.JPEG
|
|
n01955084
|
train
|
n01955084_6691.JPEG
|
|
n01955084
|
train
|
n01955084_8080.JPEG
|
|
n01955084
|
train
|
n01955084_1394.JPEG
|
|
n01955084
|
train
|
n01955084_12360.JPEG
|
|
n01955084
|
train
|
n01955084_8732.JPEG
|
|
n01955084
|
train
|
n01955084_6395.JPEG
|
|
n01955084
|
train
|
n01955084_1690.JPEG
|
|
n01955084
|
train
|
n01955084_2658.JPEG
|
|
n01955084
|
train
|
n01955084_2340.JPEG
|
|
n01955084
|
train
|
n01955084_8851.JPEG
|
|
n01955084
|
train
|
n01955084_13125.JPEG
|
|
n01955084
|
train
|
n01955084_6644.JPEG
|
|
n01955084
|
train
|
n01955084_7805.JPEG
|
|
n01955084
|
train
|
n01955084_11309.JPEG
|
|
n01955084
|
train
|
n01955084_7023.JPEG
|
|
n01955084
|
train
|
n01955084_17751.JPEG
|
|
n01955084
|
train
|
n01955084_9517.JPEG
|
|
n01955084
|
train
|
n01955084_8391.JPEG
|
|
n01955084
|
train
|
n01955084_4576.JPEG
|
|
n01955084
|
train
|
n01955084_3245.JPEG
|
|
n01955084
|
train
|
n01955084_1960.JPEG
|
|
n01955084
|
train
|
n01955084_12280.JPEG
|
|
n01955084
|
train
|
n01955084_3301.JPEG
|
|
n01955084
|
train
|
n01955084_3459.JPEG
|
|
n01955084
|
train
|
n01955084_42908.JPEG
|
|
n01955084
|
train
|
n01955084_7495.JPEG
|
|
n01955084
|
train
|
n01955084_9252.JPEG
|
|
n01955084
|
train
|
n01955084_10702.JPEG
|
|
n01955084
|
train
|
n01955084_14291.JPEG
|
|
n01955084
|
train
|
n01955084_7534.JPEG
|
|
n01955084
|
train
|
n01955084_8941.JPEG
|
|
n01955084
|
train
|
n01955084_15040.JPEG
|
|
n01955084
|
train
|
n01955084_5772.JPEG
|
|
n01955084
|
train
|
n01955084_12045.JPEG
|
|
n01955084
|
train
|
n01955084_4844.JPEG
|
|
n01955084
|
train
|
n01955084_7199.JPEG
|
|
n01955084
|
train
|
n01955084_8350.JPEG
|
|
n01955084
|
train
|
n01955084_9482.JPEG
|
|
n01955084
|
train
|
n01955084_16009.JPEG
|
|
n01955084
|
train
|
n01955084_10519.JPEG
|
|
n01955084
|
train
|
n01955084_14746.JPEG
|
|
n01955084
|
train
|
n01955084_10681.JPEG
|
|
n01955084
|
train
|
n01955084_28477.JPEG
|
|
n01955084
|
train
|
n01955084_8608.JPEG
|
|
n01955084
|
train
|
n01955084_8137.JPEG
|
|
n01955084
|
train
|
n01955084_7961.JPEG
|
|
n01955084
|
train
|
n01955084_10181.JPEG
|
|
n01955084
|
train
|
n01955084_17628.JPEG
|
|
n01955084
|
train
|
n01955084_3041.JPEG
|
|
n01955084
|
train
|
n01955084_17995.JPEG
|
|
n01955084
|
train
|
n01955084_9399.JPEG
|
|
n01955084
|
train
|
n01955084_5874.JPEG
|
|
n01955084
|
train
|
n01955084_7089.JPEG
|
|
n01955084
|
train
|
n01955084_10107.JPEG
|
|
n01955084
|
train
|
n01955084_10331.JPEG
|
|
n01955084
|
train
|
n01955084_15788.JPEG
|
|
n01955084
|
train
|
n01955084_8283.JPEG
|
|
n01955084
|
train
|
n01955084_9357.JPEG
|
|
n01955084
|
train
|
n01955084_10415.JPEG
|
|
n01955084
|
train
|
n01955084_16498.JPEG
|
|
n01955084
|
train
|
n01955084_7515.JPEG
|
|
n01955084
|
train
|
n01955084_1520.JPEG
|
|
n01955084
|
train
|
n01955084_8305.JPEG
|
|
n01955084
|
train
|
n01955084_208.JPEG
|
|
n01955084
|
train
|
n01955084_6756.JPEG
|
|
n01955084
|
train
|
n01955084_12931.JPEG
|
|
n01955084
|
train
|
n01955084_3617.JPEG
|
|
n01955084
|
train
|
n01955084_13750.JPEG
|
|
n01955084
|
train
|
n01955084_15478.JPEG
|
|
n01955084
|
train
|
n01955084_7271.JPEG
|
|
n01955084
|
train
|
n01955084_7878.JPEG
|
|
n01955084
|
train
|
n01955084_22282.JPEG
|
|
n01955084
|
train
|
n01955084_9672.JPEG
|
|
n01955084
|
train
|
n01955084_9714.JPEG
|
|
n01955084
|
train
|
n01955084_7110.JPEG
|
|
n01955084
|
train
|
n01955084_10524.JPEG
|
|
n01955084
|
train
|
n01955084_2432.JPEG
|
|
n01955084
|
train
|
n01955084_10421.JPEG
|
|
n01955084
|
train
|
n01955084_10636.JPEG
|
|
n01955084
|
train
|
n01955084_24784.JPEG
|
|
n01955084
|
train
|
n01955084_407.JPEG
|
|
n01955084
|
train
|
n01955084_12849.JPEG
|
|
n01955084
|
train
|
n01955084_11480.JPEG
|
|
n01955084
|
train
|
n01955084_2458.JPEG
|
|
n01955084
|
train
|
n01955084_2809.JPEG
|
|
n01955084
|
train
|
n01955084_7792.JPEG
|
|
n01955084
|
train
|
n01955084_7113.JPEG
|
|
n01955084
|
train
|
n01955084_9821.JPEG
|
|
n01955084
|
train
|
n01955084_6635.JPEG
|
|
n01955084
|
train
|
n01955084_6752.JPEG
|
|
n01955084
|
train
|
n01955084_6923.JPEG
|
|
n01955084
|
train
|
n01955084_4173.JPEG
|
|
n01955084
|
train
|
n01955084_961.JPEG
|
|
n01955084
|
train
|
n01955084_3908.JPEG
|
|
n01955084
|
train
|
n01955084_8178.JPEG
|
End of preview. Expand
in Data Studio
Corruption Dataset: Fog
Dataset Description
This dataset contains corrupted versions of ImageNet-1K images using fog corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.
Dataset Structure
- Train: 1,281,167 corrupted images
- Validation: 50,000 corrupted images
- Classes: 1000 ImageNet-1K classes
- Format: Arrow (Hugging Face Datasets)
Corruption Type: Fog
Adds fog effects, simulating atmospheric conditions.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("MarMaster/corruption-fog")
# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]
# Example usage
for example in train_dataset:
image = example["image"]
class_id = example["class_id"]
filename = example["filename"]
Dataset Statistics
- Total Images: 1,331,167
- Train Images: 1,281,167
- Validation Images: 50,000
- Classes: 1000
- Image Format: RGB
- Average Image Size: Variable (ImageNet-1K standard)
Citation
If you use this dataset, please cite the original ImageNet-C paper:
@article{hendrycks2019benchmarking,
title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
author={Hendrycks, Dan and Dietterich, Tom},
journal={Proceedings of the International Conference on Learning Representations},
year={2019}
}
License
This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.
Contact
For questions or issues, please contact: marcin.osial@[your-institution].edu
- Downloads last month
- 35