Dataset Viewer (First 5GB)
Auto-converted to Parquet
image
imagewidth (px)
224
224
class_id
stringclasses
268 values
split
stringclasses
1 value
filename
stringlengths
16
21
n01955084
train
n01955084_8575.JPEG
n01955084
train
n01955084_875.JPEG
n01955084
train
n01955084_15274.JPEG
n01955084
train
n01955084_10515.JPEG
n01955084
train
n01955084_3037.JPEG
n01955084
train
n01955084_6691.JPEG
n01955084
train
n01955084_8080.JPEG
n01955084
train
n01955084_1394.JPEG
n01955084
train
n01955084_12360.JPEG
n01955084
train
n01955084_8732.JPEG
n01955084
train
n01955084_6395.JPEG
n01955084
train
n01955084_1690.JPEG
n01955084
train
n01955084_2658.JPEG
n01955084
train
n01955084_2340.JPEG
n01955084
train
n01955084_8851.JPEG
n01955084
train
n01955084_13125.JPEG
n01955084
train
n01955084_6644.JPEG
n01955084
train
n01955084_7805.JPEG
n01955084
train
n01955084_11309.JPEG
n01955084
train
n01955084_7023.JPEG
n01955084
train
n01955084_17751.JPEG
n01955084
train
n01955084_9517.JPEG
n01955084
train
n01955084_8391.JPEG
n01955084
train
n01955084_4576.JPEG
n01955084
train
n01955084_3245.JPEG
n01955084
train
n01955084_1960.JPEG
n01955084
train
n01955084_12280.JPEG
n01955084
train
n01955084_3301.JPEG
n01955084
train
n01955084_3459.JPEG
n01955084
train
n01955084_42908.JPEG
n01955084
train
n01955084_7495.JPEG
n01955084
train
n01955084_9252.JPEG
n01955084
train
n01955084_10702.JPEG
n01955084
train
n01955084_14291.JPEG
n01955084
train
n01955084_7534.JPEG
n01955084
train
n01955084_8941.JPEG
n01955084
train
n01955084_15040.JPEG
n01955084
train
n01955084_5772.JPEG
n01955084
train
n01955084_12045.JPEG
n01955084
train
n01955084_4844.JPEG
n01955084
train
n01955084_7199.JPEG
n01955084
train
n01955084_8350.JPEG
n01955084
train
n01955084_9482.JPEG
n01955084
train
n01955084_16009.JPEG
n01955084
train
n01955084_10519.JPEG
n01955084
train
n01955084_14746.JPEG
n01955084
train
n01955084_10681.JPEG
n01955084
train
n01955084_28477.JPEG
n01955084
train
n01955084_8608.JPEG
n01955084
train
n01955084_8137.JPEG
n01955084
train
n01955084_7961.JPEG
n01955084
train
n01955084_10181.JPEG
n01955084
train
n01955084_17628.JPEG
n01955084
train
n01955084_3041.JPEG
n01955084
train
n01955084_17995.JPEG
n01955084
train
n01955084_9399.JPEG
n01955084
train
n01955084_5874.JPEG
n01955084
train
n01955084_7089.JPEG
n01955084
train
n01955084_10107.JPEG
n01955084
train
n01955084_10331.JPEG
n01955084
train
n01955084_15788.JPEG
n01955084
train
n01955084_8283.JPEG
n01955084
train
n01955084_9357.JPEG
n01955084
train
n01955084_10415.JPEG
n01955084
train
n01955084_16498.JPEG
n01955084
train
n01955084_7515.JPEG
n01955084
train
n01955084_1520.JPEG
n01955084
train
n01955084_8305.JPEG
n01955084
train
n01955084_208.JPEG
n01955084
train
n01955084_6756.JPEG
n01955084
train
n01955084_12931.JPEG
n01955084
train
n01955084_3617.JPEG
n01955084
train
n01955084_13750.JPEG
n01955084
train
n01955084_15478.JPEG
n01955084
train
n01955084_7271.JPEG
n01955084
train
n01955084_7878.JPEG
n01955084
train
n01955084_22282.JPEG
n01955084
train
n01955084_9672.JPEG
n01955084
train
n01955084_9714.JPEG
n01955084
train
n01955084_7110.JPEG
n01955084
train
n01955084_10524.JPEG
n01955084
train
n01955084_2432.JPEG
n01955084
train
n01955084_10421.JPEG
n01955084
train
n01955084_10636.JPEG
n01955084
train
n01955084_24784.JPEG
n01955084
train
n01955084_407.JPEG
n01955084
train
n01955084_12849.JPEG
n01955084
train
n01955084_11480.JPEG
n01955084
train
n01955084_2458.JPEG
n01955084
train
n01955084_2809.JPEG
n01955084
train
n01955084_7792.JPEG
n01955084
train
n01955084_7113.JPEG
n01955084
train
n01955084_9821.JPEG
n01955084
train
n01955084_6635.JPEG
n01955084
train
n01955084_6752.JPEG
n01955084
train
n01955084_6923.JPEG
n01955084
train
n01955084_4173.JPEG
n01955084
train
n01955084_961.JPEG
n01955084
train
n01955084_3908.JPEG
n01955084
train
n01955084_8178.JPEG
End of preview. Expand in Data Studio

Corruption Dataset: Fog

Dataset Description

This dataset contains corrupted versions of ImageNet-1K images using fog corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.

Dataset Structure

  • Train: 1,281,167 corrupted images
  • Validation: 50,000 corrupted images
  • Classes: 1000 ImageNet-1K classes
  • Format: Arrow (Hugging Face Datasets)

Corruption Type: Fog

Adds fog effects, simulating atmospheric conditions.

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("MarMaster/corruption-fog")

# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]

# Example usage
for example in train_dataset:
    image = example["image"]
    class_id = example["class_id"]
    filename = example["filename"]

Dataset Statistics

  • Total Images: 1,331,167
  • Train Images: 1,281,167
  • Validation Images: 50,000
  • Classes: 1000
  • Image Format: RGB
  • Average Image Size: Variable (ImageNet-1K standard)

Citation

If you use this dataset, please cite the original ImageNet-C paper:

@article{hendrycks2019benchmarking,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Hendrycks, Dan and Dietterich, Tom},
  journal={Proceedings of the International Conference on Learning Representations},
  year={2019}
}

License

This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.

Contact

For questions or issues, please contact: marcin.osial@[your-institution].edu

Downloads last month
35