Dataset Viewer
Auto-converted to Parquet
token
stringlengths
1
20
pos_tag
stringclasses
114 values
sentence_id
int64
0
69
position
int64
0
954
filename
stringclasses
168 values
AUSTINE
NN
0
0
0044_dho_pos.csv
SIGANA
NN
0
1
0044_dho_pos.csv
MAR
ADP
0
2
0044_dho_pos.csv
OPUK
NN
0
3
0044_dho_pos.csv
GI
Conj
0
4
0044_dho_pos.csv
APUOYO
NN
0
5
0044_dho_pos.csv
Chon
ADV
0
6
0044_dho_pos.csv
Chon
ADV
0
7
0044_dho_pos.csv
gi
Conj
0
8
0044_dho_pos.csv
lala
NN
0
9
0044_dho_pos.csv
ne
Det
0
10
0044_dho_pos.csv
nitiere
V
0
11
0044_dho_pos.csv
opuk
NN
0
12
0044_dho_pos.csv
gi
Conj
0
13
0044_dho_pos.csv
apuoyo
NN
0
14
0044_dho_pos.csv
,
PUNCT
0
15
0044_dho_pos.csv
opuk
NN
0
16
0044_dho_pos.csv
ne
ADV
0
17
0044_dho_pos.csv
en
V
0
18
0044_dho_pos.csv
lee
NN
0
19
0044_dho_pos.csv
ma
ADP
0
20
0044_dho_pos.csv
odak
V
0
21
0044_dho_pos.csv
e
ADP
0
22
0044_dho_pos.csv
pii
NN
0
23
0044_dho_pos.csv
to
Conj
0
24
0044_dho_pos.csv
apuoyo
NN
0
25
0044_dho_pos.csv
ne
ADV
0
26
0044_dho_pos.csv
en
V
0
27
0044_dho_pos.csv
lee
NN
0
28
0044_dho_pos.csv
ma
ADP
0
29
0044_dho_pos.csv
ne
ADV
0
30
0044_dho_pos.csv
odak
V
0
31
0044_dho_pos.csv
e
ADP
0
32
0044_dho_pos.csv
bungu
NN
0
33
0044_dho_pos.csv
.
PUNCT
0
34
0044_dho_pos.csv
apuoyo
NN
1
0
0044_dho_pos.csv
ne
ADV
1
1
0044_dho_pos.csv
ofuwo
V
1
2
0044_dho_pos.csv
ahinya
Adj
1
3
0044_dho_pos.csv
kendo
ADV
1
4
0044_dho_pos.csv
ne
ADV
1
5
0044_dho_pos.csv
en
V
1
6
0044_dho_pos.csv
gi
PRON
1
7
0044_dho_pos.csv
paro
V
1
8
0044_dho_pos.csv
mang' eny
Adj
1
9
0044_dho_pos.csv
.
PUNCT
1
10
0044_dho_pos.csv
chieng'
NN
2
0
0044_dho_pos.csv
moro
NN
2
1
0044_dho_pos.csv
achiel
NUM
2
2
0044_dho_pos.csv
opuk
NN
2
3
0044_dho_pos.csv
gi
Conj
2
4
0044_dho_pos.csv
apuoyo
NN
2
5
0044_dho_pos.csv
ne
ADV
2
6
0044_dho_pos.csv
odhi
V
2
7
0044_dho_pos.csv
e
ADP
2
8
0044_dho_pos.csv
ng'wech
NN
2
9
0044_dho_pos.csv
,
PUNCT
2
10
0044_dho_pos.csv
apuoyo
NN
2
11
0044_dho_pos.csv
ne
ADV
2
12
0044_dho_pos.csv
okono
V
2
13
0044_dho_pos.csv
opuk
NN
2
14
0044_dho_pos.csv
nitiere
V
2
15
0044_dho_pos.csv
opuk
NN
2
16
0044_dho_pos.csv
kia
V
2
17
0044_dho_pos.csv
ng'wech
NN
2
18
0044_dho_pos.csv
to
Conj
2
19
0044_dho_pos.csv
opuk
NN
2
20
0044_dho_pos.csv
ne
ADV
2
21
0044_dho_pos.csv
onyise
V
2
22
0044_dho_pos.csv
ni
Det
2
23
0044_dho_pos.csv
apuoyo
NN
2
24
0044_dho_pos.csv
in
PRON
2
25
0044_dho_pos.csv
okono
V
2
26
0044_dho_pos.csv
inyal
V
2
27
0044_dho_pos.csv
yomba
V
2
28
0044_dho_pos.csv
.
PUNCT
2
29
0044_dho_pos.csv
apuoyo
NN
3
0
0044_dho_pos.csv
ne
ADV
3
1
0044_dho_pos.csv
owacho
V
3
2
0044_dho_pos.csv
ne
PRON
3
3
0044_dho_pos.csv
opuk
NN
3
4
0044_dho_pos.csv
ni
Det
3
5
0044_dho_pos.csv
,
PUNCT
3
6
0044_dho_pos.csv
opuk
NN
3
7
0044_dho_pos.csv
adhi
V
3
8
0044_dho_pos.csv
yombi
V
3
9
0044_dho_pos.csv
mabor
Adj
3
10
0044_dho_pos.csv
.
PUNCT
3
11
0044_dho_pos.csv
ka
ADV
4
0
0044_dho_pos.csv
ne
ADV
4
1
0044_dho_pos.csv
gi
PRON
4
2
0044_dho_pos.csv
chako
V
4
3
0044_dho_pos.csv
ng'wech
NN
4
4
0044_dho_pos.csv
,
PUNCT
4
5
0044_dho_pos.csv
apuoyo
NN
4
6
0044_dho_pos.csv
ne
ADV
4
7
0044_dho_pos.csv
oyombo
V
4
8
0044_dho_pos.csv
opuk
NN
4
9
0044_dho_pos.csv
mabor
Adj
4
10
0044_dho_pos.csv
.
PUNCT
4
11
0044_dho_pos.csv
End of preview. Expand in Data Studio

KenPOS: Kenyan Languages Part-of-Speech Tagged Dataset

Dataset Description

KenPOS is a part-of-speech (POS) tagged corpus for Kenyan languages, featuring 156,994 tokens across four languages. The dataset provides manually annotated POS tags for low-resource Kenyan languages, enabling NLP research and applications.

Dataset Statistics

Language Code Tokens Sentences Files Unique POS Tags
Dholuo dho 54,712 70 168 114
Lubukusu lbk 51,900 154 62 97
Lumarachi lch 25,917 27 212 78
Lulogooli llg 24,465 290 121 75
Total 156,994 541 563

Languages & Codes

Language / Dialect Code Family / Notes
Dholuo (Luo) dho Nilotic (western Kenya)
Lubukusu (Bukusu) lbk Bantu, Luhya dialect
Lumarachi (Marachi) lch Bantu, Luhya dialect
Lulogooli (Logooli) llg Bantu, Luhya dialect

Dataset Format

The dataset is distributed as Parquet files for optimal performance and compatibility:

  • Format: Apache Parquet (columnar storage)
  • Encoding: UTF-8
  • File naming: {language}/train.parquet
  • Compatibility: Works with datasets 4.0.0+ without custom loading scripts

Data Fields

Each record in the dataset contains:

  • token: string - The word or token
  • pos_tag: string - Part-of-speech tag (e.g., NN, V, ADJ, PUNCT)
  • sentence_id: int - Unique identifier for the sentence
  • position: int - Position of the token within the sentence (0-indexed)
  • filename: string - Source filename from which the token was extracted

Example Record

{
  'token': 'Kezia',
  'pos_tag': 'NN',
  'sentence_id': 0,
  'position': 0,
  'filename': '4411_dho_pos.csv'
}

Usage

Loading with πŸ€— Datasets

Compatible with datasets 4.0.0+ (No trust_remote_code needed!)

from datasets import load_dataset

# Load Dholuo POS dataset
dho = load_dataset("Kencorpus/KenPOS", "dho")

# Load Lubukusu POS dataset
lbk = load_dataset("Kencorpus/KenPOS", "lbk")

# Load Lumarachi POS dataset
lch = load_dataset("Kencorpus/KenPOS", "lch")

# Load Lulogooli POS dataset
llg = load_dataset("Kencorpus/KenPOS", "llg")

# Access the data
print(dho['train'][0])
# Output: {'token': 'Kezia', 'pos_tag': 'NN', 'sentence_id': 0, 'position': 0, 'filename': '4411_dho_pos.csv'}

Reconstructing Sentences

from datasets import load_dataset
import pandas as pd

# Load dataset
dho = load_dataset("Kencorpus/KenPOS", "dho")
df = pd.DataFrame(dho['train'])

# Get first sentence
sentence_0 = df[df['sentence_id'] == 0].sort_values('position')
print(' '.join(sentence_0['token'].tolist()))

Analyzing POS Tags

from datasets import load_dataset
import pandas as pd

# Load dataset
dho = load_dataset("Kencorpus/KenPOS", "dho")
df = pd.DataFrame(dho['train'])

# Count POS tag frequencies
pos_counts = df['pos_tag'].value_counts()
print(pos_counts.head(10))

POS Tag Categories

The dataset uses a variety of POS tags including:

  • NN - Noun
  • V - Verb
  • ADJ/Adj. - Adjective
  • ADV/Adv - Adverb
  • PRON - Pronoun
  • ADP - Adposition (preposition/postposition)
  • DET/Det. - Determiner
  • CONJ/Conj. - Conjunction
  • NUM - Numeral
  • PUNCT/PUNC - Punctuation
  • And many more fine-grained categories

Note: Tag naming conventions may vary slightly across files (e.g., PUNCT vs PUNC, ADJ vs Adj.).


Dataset Curators

  • Florence Indede (Maseno University)
  • Owen McOnyango (Maseno University)
  • Lilian D.A. Wanzare (Maseno University)
  • Barack Wanjawa (University of Nairobi)
  • Edward Ombui (Africa Nazarene University)
  • Lawrence Muchemi (University of Nairobi)

Citation

If you use this dataset in your research, please cite:

@article{wanjawa2022kencorpus,
  title={Kencorpus: A Kenyan Language Corpus of Swahili, Dholuo and Luhya for Natural Language Processing Tasks},
  author={Wanjawa, Barack W. and Wanzare, Lilian D. and Indede, Florence and McOnyango, Owen and Ombui, Edward and Muchemi, Lawrence},
  journal={arXiv preprint arXiv:2208.12081},
  year={2022}
}

Links


License

This dataset is licensed under CC-BY-4.0.


Acknowledgments

This dataset is part of the Kencorpus project, which aims to create NLP resources for low-resource Kenyan languages.

Downloads last month
107