Dataset Viewer
Auto-converted to Parquet Duplicate
index
string
id
string
context
string
question
string
marking
string
answer
string
answer_type
string
unit
string
points
string
modality
string
field
string
source
string
image_question
string
information
string
image
images list
0
APhO_2025_1_A_1
[Precession of the Earth's axis] [Introduction] It has been known since ancient times that the Earth's axis of rotation precesses. That is, the axis itself rotates around the line perpendicular to the ecliptic plane, i.e., the plane containing the Earth's orbit around the Sun. Ancient Greek astronomer Hipparchus concluded that the annual angular displacement of the axis was approximately 45'' (seconds of arc), which would imply that the period of axial precession is around 29000 years. Modern measurements indicate that the period is approximately 25800 years. In this problem, you are asked to investigate this phenomenon using Newtonian mechanics. You may need the following constants: gravitational constant: $G = 6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ average radius of Earth: $R = 6.371 \times 10^{6} \mathrm{m}$ mass of the Earth: $M_{E} = 5.972 \times 10^{24} \mathrm{kg}$ average distance of the Sun from the Earth: $d_{SE} = 1.496 \times 10^{11} \mathrm{m}$ mass of the Sun: $M_{S} = 1.989 \times 10^{30} \mathrm{kg}$ average distance of the Moon from the Earth: $d_{ME} = 3.844 \times 10^{8} \mathrm{m}$ mass of the Moon: $M_{M} = 7.348 \times 10^{22} \mathrm{kg}$ Earth's axial tilt: $\alpha = 23.5^{\circ}$ [Part A: The shape of the Earth] The Sun and the Moon exert nonzero torques on the Earth because of its non-spherical shape, giving rise to its axial precession. The main reason behind the Earth's non-spherical shape is the centrifugal force caused by the Earth's rotation about its axis. The tectonic plates located on the Earth's surface have deformed over millions of years to minimize stress within them. Therefore, as an approximation, let us model the Earth as a large liquid droplet of uniform density whose shape is determined by centrifugal and gravitational forces. In this model, the Earth's surface is an oblate spheroid (ellipsoid of revolution) characterized by the polar radius $R_{p}$ and the equatorial radius $R_{e}$ (see Figure A.1). [figure1] Figure A.1. The ellipsoidal shape of the Earth. The polar and equatorial radii are indicated. $\alpha = 23.5^{\circ}$ is the angle between the Earth's axis of rotation and the normal of the ecliptic plane. The difference between the equatorial and polar radii of the Earth, $h_{\max} = R_{e} - R_{p}$ is much smaller than the average radius $R = (R_{e} + R_{p}) / 2$. Up to a dimensionless factor, the value of $h_{\max}$ can be expressed in terms of the angular speed of the Earth's rotation $\omega$, its mass $M_{E}$ and average radius $R$ as $h_{\max} \propto G^{-1} \omega^{\beta} M_E^{\gamma} R^{\delta}$ where $G$ is the gravitational constant, and $\beta, \gamma$ and $\delta$ are constant exponents.
Find the values of exponents: (1) $\beta$, (2) $\gamma$, and (3) $\delta$.
[["Award 0.2 pt if the answer correctly expresses the dimension of $G$ as $[G] = L^3 M^{-1} T^{-2}$, where $L$ is the base dimensions length, $M$ is mass, and $T$ is time. Otherwise, award 0 pt.", "Award 0.1 pt if the answer correctly sets up the exponent equation $0 = 2 - \\beta$. Otherwise, award 0 pt.", "Award 0.1 pt if the answer correctly sets up the exponent equation $0 = \\gamma + 1$. Otherwise, award 0 pt.", "Award 0.1 pt if the answer correctly sets up the exponent equation $1 = \\delta - 3$. Otherwise, award 0 pt.", "Award 0.1 pt if the answer obtains the correct value $\\beta = 2$. Otherwise, award 0 pt.", "Award 0.1 pt if the answer obtains the correct value $\\gamma = -1$. Otherwise, award 0 pt.", "Award 0.1 pt if the answer obtains the correct value $\\delta = 4$. Otherwise, award 0 pt."]]
["\\boxed{$\\beta = 2$}", "\\boxed{$\\gamma = -1$}", "\\boxed{$\\delta = 4$}"]
["Numerical Value", "Numerical Value", "Numerical Value"]
[null, null, null]
[0.3, 0.3, 0.2]
text+illustration figure
Mechanics
APhO_2025
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAKKBuEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiio554baFpp5FjjUZZmOAKAJKKztI1q11uGSezEphR9qyOm0P7r6itGgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorJ8SS61Fo8h0C3hnvycKsrhQB680AJrniOx0KFTcMXnkOIrePl5D7CuQurm2vrhb3xhqMFtbL80OkxyZHt5mOWPt09q5yx8I+Jvt8uoeINN1C+uZfv8AkX0aZH90EHO326V1WmvHoxDWnw/nt5O8iCNnP1I5NAGnH4ztWjWPS9F1O5RRhfKtiqAex9Kf/wAJJr7cx+EpyvbfchT+W2lTxdcl1WTw3qyZOM+SWA/IV06ncobBGRnB7UAcv/wkmvx8zeE7gL/0zuQ5/LbSx+OdPilWLVLa80t26G7iKqfxrqKZLDHPE0U0ayRsMFWGQaAG29zDdwrNbypJGwyGU5BqWuL1LRZ/Cpk1fw8GW2U77rTl/wBW6fxFB/CwGTx1rq9PvoNTsIb22cPDMoZWFAFmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAYZohMITIglIyE3DcR64p9cr4xR7B7DxDACWsJMTAfxQtjd+WBXURyJLEkkbBkcBlI7g9KAHUUUUAFFFFAAQCMHpXK+A/3ekXlqOY7a+lijPYqMf41u6tqUOkaVdahOf3cEbOR64HQe56VmeDLCaw8NQC5GJ52M8g9C1AHQUVVtdSs76a4htrhJZLZ/LmC/wNjOD+dWqACisrXPEmj+G4IptXvo7WOVxGhfPzN+FaiOsiK6nKsMgjuKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoqlq2oR6VpF3fyfdgiZ8epA4H4mjSLi5u9Jtbi8jWOeVA7IvQZ6fpQBdooooAKKKKAIbu2jvLSa2lUNHKhVgfes3wxYX2l6HDYXzrI9uWjjcHOYwSEz77cVsVka1rR0aawMkWba4nEEkuf9WW4U/nQBr0UUUAFFBIAJJwBXHahq9z4mupNH0CZkt0bZeagnSP1RD3b+VACXzHxh4gXTomJ0jT5BJdOvSaVTlUz6A4J+lbviPUjovhy8vY1G+KMLGP9piFX9SKs6Vpdpo2nxWNlEI4YxgAdT7k9z71yvxVuJ7PwPNdxKWjt7iCWZQM5RZFJ/UCgDZ8JaImh6BDDndcTEz3Eh6vI3JJ/QfhTtM8T2ereIdU0e2VzLp2wSyfwksAcD6Zrmrj4weEodFS7t9RiubqRB5dpCcyFz/DtHI5rkvh5400/w9q+v2nivZo+qXd19rP2hto2OoKrk9wO1AHU/GXw9ba94HYOoF1FPH9nfuGZguPxzj8a7ywi8jT7eLn5I1Xn6VwFrr8PxG8UW0WkkyaFpconuLgggTSjlFHrg4P4V6PQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBzHxAJHhGYD7rXFur/7pmQH9M10cAAt4gv3Qgx9MVV1jTY9Y0i60+UlVnjK7h1U9j+Bwax/C+uF0Ojaoyw6rafuyh4Eqjo6+tAHTUUUUAFFFFABWbr+kx63ol1p8hx5qEK3dW7EfStKsrU/EmkaQMXd7GH7Rp87n/gI5oAr+EdVl1XQImuhtvYCYLle4kXhv1q9qus2Gi2puL64WJeir1Zz6KByT9K5aK81bUZ5j4f0tdKt7p9819ejDOfVYweT9SK19M8I2Vnci9vJJdQv+9xcnOP8AdXoKAM3y9a8Y/wCvSTStFJ/1ZOJ7ge+Pur+vtXV2Nja6baR2tnCkMEYwqKMAVYooAKiubaG8tpLe4jWSGRSrowyGB7VLRQByOlfDPwlo2p/2hZaRCtwDlWYZCH2HarPiLwF4b8VXEdxq2nRzToMCQcNj0J9K6WigChpGjadoVgljplpHbW6dEjXA+tX6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsrWfD1hrkSi5jKTpzFcRHbJGfZv6dK1aKAOSWx8X6SdtpqFtqsHZbxNkg/4EuB+lSf2/4lh+W48Lb2/vQXYYH/x2upooA5b/AISLxC3CeE5c9t92AP8A0GkNx43ufuWelWQPeR2mI/IrXVUUAcl/wimq35zrHiS8kXvDaKsKfyLfrWtpnhnR9JO61sYxL3lkJkc/8CbJrXooAwvF1hcX3h+ZrN3S7titzDtJG5kIbb9DjH41e0XUo9X0e1vojxKgJ9j3H51frnvDumXejX+qWhjH9nPKJ7Vgfu7s7lx7YH50AdDRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUdY1IaRpU9+0LypCAzKnXGQCfwzn8KvVHPClzbyQSrujkUow9QRg0AJbTx3VtFcRNujlQOpHcEZqWuV8GXD2ovvD9y37/TpSI8/wAULcof/Qh/wGuqoAKKRnVFLOwVRySTgCua1b4g+F9FLJdatC0oGRHFl2b2GOP1oA6aivMbj4q3+oyeV4Z8LX94SP8AWXA8oA+3UH86py6f8WPEKAy3ljpMR6pGxD498Ag0AerTXENsm+eaOJP7zsFH61hXvjnwzYZEur2zkdVgbzT+S5rz+P4MaleyCbVvFVwz91jjJB/EsP5VrWvwR8NRHfcXF9PJ6+YFH5YoAuz/ABX0gEi0sry5H97asQ/8iFapy/FKc/6rTbWIdvtF/CP5Ma0E+EfhNOttcP8A782asp8LfB6ddHjf/fJNAHP/APCwdYuv9XceH7cf9fm8/wAqUeKPEcn3Nc0j/gIBroH+F3g5+miwp/uEiq7/AAl8Jv0tJk/3JSKAMxNZ8Wy/c1qwP+7ADTv7S8Y/9Bq0+n2QVNN8HPDrDNvc6lbuOhW4yPyxVKT4V6tbc6Z4vukA6Rywgj880AWl1nxjH/y96dL/AL0ZX+QqQeKPF0X3rHSp/wDdmdf/AGWsSbwx8RtPy0Nzpd/GP4WLK5/TFUX8S61pTbNd8M3tvjgyW+JQffjpQB1yeOdag5u/DjSL3NrOh/8AQiKtRfErSgQL2z1Gz9d9q7gfigIrlbLxjoV82xL1Y5O8cwKEfnW0jxToGRkkQ9wQQaAOls/Gnhy+YLFq9qrnosr+WfybFbiSJKgeN1dT0ZTkGvN59Nsrlds1rEw91FU00GO1cyabe3lg/byZePyOaAPVqK82i1fxdp3+ru7PUox/DOhic/8AAhu/lWpZ/ES1QrFrdhc6bL/fx5kR+jDn8wKAO1oqrZajZajEJLO6hnQjOY3Bq1QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWVrviTSvDdmbrVLyOBP4VJ+Zz6AdzXDnxX4u8Y5j8L6b/Z9g3H9oXa8keqg8H+dAHWaze+H/AA/qB1zUbqO3uPK8kkvy6gkgY7nk/nXLyfEfV9dYw+EfD09yM4+1XYKxr9R1/WqGq/C6ztfDmpajql7c6pq/kkrcTSEiM/7I9Kt/DLxjPNYW2i6wNk6Dy7aYjAkAHCn/AGsYPuCKABPAXifxE4l8V+I5kiPP2Ow+RR7bu4+tdRpPgHwxoyj7LpMBcdZJRvJPrzXS0UANjijhQJEioo6KowKdRRQAUUUUAFFFFABRRRQAUUUUAFIyq6lWAIPUEUtFAGFqfg3w7rCFb3SLVyf4lTYfzXFcZffCi5sHM/hfXLm0PX7PcfvI/oPSvUKKAPF59S8U+HPl8QaGZYV63Vnllx9K1NK8RaZrKZtLlS46xvww+or1QjIwa43xH8NNC1+Q3McTaffjlbm0PlnPuBwaAKNIyK6lXUMp6gjIrnLuw8ZeEAftNv8A21pqf8toR+9Ue4/qavaN4j07XIybSYeYv34m4dfqKYhZdAtPN86zeaxnznzLV9n6fdP5Ves/EfiTRCFvEXWLQdXUbJ1H4cN+QqeigDpdG8V6RrgK2tyFnH3oJfldfqK268wv9HstRw00WJl+5NGdki/RhyKlstc1/wAO4WZn1fT17MB58Y+v8X45NIZ6VRWXoviDTfEFr5+n3KybeHToyH0YdQa1KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorlvF/jzSPCNoxuZRLeEfu7aM5Zj7+goA6WeeG1geaeVIokGWd2AAHuTXm+qfEi91q+fSPA9k19cA7XvWXEMZ9cng/1rD07SPFXxQuVvdelfTtBDZjtkyDIP89z+Ves6To2n6HZJZ6daxwQoMAKOT7k0AcboPwziW9GreKLo6vqhwf3pLRofYH0r0BVVFCqoVRwAKWigDO16LztAv4/WBv5V5xa6VazR6H5+UtdZsIE81eDFcpGArA9iQFH4V6ndRGe0mhGMyRsoz7jFcpceF7keAIdJ8xPt9nGGgkQ8CReVI/SgC54c1W+FzLoesKf7Qtl3LMF+W4j6BwfX1FdJWV4e1SLXNFtNSVAskkY3qRyjd1P0NatABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAHWuK8T/DfTNcmN/ZMdO1Qcrcwcbj/tAda7WigDxSXV9b8I3K2fiq1Y2+cJqEC7kYf7WOn866a2uYLuBZ7eVJYnGVZDkGu+u7O2v7d7e6hSaFxhkcZBryrXfBOq+D55NT8LBrrTyd0+nMeVHcpQBuUVlaJ4gstcg3QOUmXiSB+HQ+4rVpiM260hJLoX1nM9lfr924h4J9j6j2rY0jxtPZ3Men+JVSF3O2K9T/AFUh9G/un68VDUVxbw3ULQzxrJGwwVYUAeiKwZQykEHkEd6WvMNO1XUvCDqoEl/oufmjzmW3Hqv95favRNO1Kz1ayS7sZ1mhfoV7exHY0hluiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa7rGhd2CqBkknAFRXl5b2FpJdXUqxQxjczscACvGvGnje7154rCxhm+y3Dbbe1TIku/QtjkIf1oA2PGvxUFqG0/w6vn3TnyxcYyM9MIO59+g96j8EfDF5Zxr/AIsZ7q/kO9IJDkJ7t6n26Vq+A/h2ujOur6yqT6s4+VcDZbj0UdBXodACKqooVVCqBgADAFLRRQAUUUUAFFFFAHJaR/xJPGN/pJ+W2vs3lqOwb+NR+OTXW1y/ja1mXToNZtFJutLlFwMdWjH+sX8V3V0NldR31lDdQsGjlQMpHvQBPRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwPjH4dxalIdX0J/sGsx/MGThJvZhXOaD4jN5O+manCbTVoPlkhbjd7rXsNcj418DWviiBbmBvsurQcwXScH6H1FAGbRXN6Lrl3HqD6Fr0P2bVYeBkYWYf3l+tdJTEHWstBeeHNQbVNHUvE5zdWWflkH95fRv51qUUAdho2tWWu6el5Yy70b7yn7yHuCOxFaFeVvHeaHqLaxow/eHm5tf4Jx9Oze9eh6JrVpr+lxX9m+UccqeqN3UjsRSGaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUtW1a00XTpb69lEcKfmx7ADuTTtT1O00iwlvb2URwxjJJ6n2A7mvJ9b1l71X8Q62DHaw/8AHjZE9z0JHdj+lAFbxZ4kutQWO71KJhE7YsNKXlpG7M4/p2rrvAPgmXS2bXdbxLrVyM88iBT0UfhxVD4f+EZ7u4HivX13Xs3NrbsOII+34mvTaACiiigAooooAKKKKACiiigBrosiMjqGVhgg9xXLeEHbTbnUPDkrHNk++3z/ABQtnH5Y/WurrkfFaNpOraZ4khB2wv8AZrsDvC/GfwYJ+tAHXUUisroGUgqwyCO4paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlPG/gyHxVYK8LC31O2+a2uBwVPoT6VxHh3XZ7iabSNWj+z6va/LLG3G/H8Q9a9irh/H3go65bjVdLYQa1aDfC448zH8J+tAFeisXw1rg1qwPmr5V5AfLuIT1VhW1TEFZiXc/hTVH1e0RpLGY/6dboM8f89APUdT+NadIQGBBGQeoNAHdWl3BfWkV1bSLJDKoZHU5BFT15r4f1I+FtcTT5WI0i+bERPSCX09gefxAr0qkMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoL29t9Ps5bu6lWKCJSzux4AFTMwVSzHAHJJrzPW9TPjDVPs8JJ0Szk+Y9rmQH9VB/PFAFa6vJvE95/a2ogw6ZBl7W2fgYH/LR/f27VQ8N6TL4+8TDVLpSNA098QRnpPJ6/QVBr5ufEGs2nhLTWKtOQ13In/LOIcn6Zr2DStMttH0yCws4xHBCgVQP50AW1UKoVQAAMADtS0UUAFFFFABRRRQAUUUUAFFFFABVXUrGLUtNubKYZjnjKH2z3q1RQBzngy+kn0h7C6P+madIbaUHqQOVP4qR+VdHXIagv8AYPji11IHbaaqotbj0Eq5KN+ILD8BXX0AFFFFACbgO4o3L6j868K+N1smhNpraTqOqW+o6lcEHZfzbcDAOF3YHLDoK7vTvhrp50e0F3f60bzyUMsg1S4BL4GeN+OtAHd0V4v45vdZ+E8un6ppur3d/ps83lTWd9J5p4GflY/MPzr1vSNSi1fSLTUYf9VcxCRfoaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB5T4/8PXGgasvi/R4yY/u6hbqOGU/xj3FXbC+g1Gyiu7Zw8Ui5BFejTQxzwvDKgeN1KspHBBrxc2cngXxnJo8hI0jUCZbNj0Ru6UAdXRRRTEVr+yi1CyktpejDhh1U9iPcGt3wTr0l/aSaXftjUrHCP/00T+Fx9en4Vl1lam0ul3ttr1oD51ocSgf8tIj1B+nX86BnqtFQ2tzFeWkN1AwaKZA6MO4IyKmpAFFZdxr9lBrVvpILy3c2WKRru8tQPvN6Dt+NaMsscMZkldURRksxwBQA+iuWm8a29zM1toNpLq1wpwWh/wBUp936CpLHT/Ed3fRXmrailvEh3CytFG0+zMck/gaAOlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorE8U68mgaO9wBvuZD5dvEOruen5daAOf8Za1Le3o8N6dKUZlD3syHmND0UH1NYep31n4X8PvMEVIbdNscY4yewqfSbBrO3eS4bzLy4Yy3Eh/ic/0HA/CsmCzHjD4h22nEb9N0vE9z6M/UL/SgDqfhl4bm07TZdb1JT/ampfvH3DlEPIX2rvaQAKoAGAOAKWgAooooAKKKKACiiigAooooAKKKKACiiigDI8TaUNY0G5tRxKB5kTd1deQaPDOrf21oFtdvxOAY517rIp2sPzBrXrkdPX+wPHF1Yfds9VX7TB6CUDDr+OAfxoA66iimSyLDE8rnCIpZj6AUAeA+PL221z486Rp13cxRWOnqvmtK4VVbknk/wDAa9juvGvhizj3za/po9FW5RifoAcmvIfhNZp4p+JfijxFdxLKiN5abxkHcSP5IPzr1XxT4W8P6h4fvBfWEAjSJm8wIAUwOoNAHnvizSNU+L2uWNta209n4cs33vdXMZjaU9yitgnjjOK9hsLKHTrCCyt12wwIEQewry34BeItS1zwpeQ6hM0wsphFE7ddu3OPwr1K9v7TToDPeXEcMWcbnOMn+tAFiis59f0mO1S5bUbfyZBlGDg7h7Ac1btbu3vrdbi1njmhbo8bZBoAmooooAKKKKACiiigAooooAKKKKACiiigAooooAK5jx34YTxR4ckt1wt3CfNtpO6uP8a6eigDyHwprT6tphjuQUv7VjDcxt1DLxmt6sLxrYjwr45tNdhXZYaniG6x0V+gY/pW6DkZpgFNdFkRkYZVhginUUCJvAN+9nNd+G7hubY+bak/xQsc4/A5H0AqbxX42h02dtLsLm3W96SzysBHbj39W9FHNcr4mSa2gj1S0nkt57bIaWMfMIz97Fael/CWytnW9i1y7lmf5/PCgFs9+ppDJtAkv1hkXw7pcsss53XGrakDH5p9QD8xHpxitpPBn9oOs3iO/m1Rwc+Qx2wKfZOh/EUo8EIwAn13WZcdvtOB/KtrSdHg0a3eGCWeRWbcWnk3n86ALdvbw2sKw28SRRIMKiDAAqWqJ1nS1mELalZiUnaEM67s+mM9avUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANd1jRndgqqMknsK8uN0/ibX5NYmz9jtyYrGM9MfxOfc8D8K6Dx9qsi2sGg2bEXWoHbIw6xwj75/EfL+NZtvBHa20cESgJGoUAUAUtf1RNH0a4vH5KrhF/vMegrc+GHh6TRvDC3d4M6hqLfaZ2PX5uQPyxXG6jb/8JJ460fQB81vCftV0OxUHgH8q9nAAAAGAOgFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc340sZptHW/s1ze6dILmHH8WOq/jXSUjKGUqRkEYNAFbTdQg1XTbe/tm3QzxiRD7EZrkPHfiqW00fU9L0/StRur+SFoo2jhGzLcZ3Z9Ce1XPCv/En1bUvDjcRwubi0H/TJjnA+hOK62gDx74Jq3h7RG0rUNMv4dRurlneR4fkxgYyc+x/OvRfGVhd6p4O1exsTi6ntnSL/eIrcooA8L+DeqQeEPC+p2Wp29xHqf2nItPKO+Q4wAOMe1eiXttM3h6LXNfKGextpbg24X5BJtOM564BI/Guu8tN+/Yu/puxzXAfGLU/svgaTT4pAtxqc8VpHzzlmBP6A0AVvhNoVpbeCE1a8gV5b15LjMo3eXGScKAeAOvSoPg7LNcN4mniyumNqkn2Ve3bJX2rZsfB2px+GrfQ01ySPTREqnYg87bjld2Omc+/vXV6RpNloelwadp8Cw20K7UUfzPqaALtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAASB1OKja4gT700Y+rCsnxJaaXdWAOrXkltbxNvLR3LQ9u5UgmuEkstFvI3OhaLeXkSg7r28vZhAPfJb5vwoA67xlYab4j8M3mmy3lssjoTEzSr8rjoevrXB+C9XfU9EWK4P+l2p8mYZzyOM/jVLR/h6PFuqC5uXH9kRPy8SbFmI6hM/MV7ZJNW9W0yDwd8R4I7WMQ6bqcGxUH3VdR/MkUAdLRRRTER3EKXFvJDIMo6lSK1/h5fPN4cGnzuWuNNc2rk9Sq8KfxABrMqHQJzpnjwRZxDqkJBHbzEGc/wDfIoGejUEZGDRSMwRCzHAAyTSA8L8RaNp2ofH3RdO0+1SMWyC5u9pPzNuLHP4EV7rXz94G1K+1r4ueKNU0+2Se7L+TFLLny4kHybmx14UcA13HijxVr/ga+0i41O5tb6xv7kW8qJFsMWf4lOf55oA9JopqMHRXHRhkU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjnnjtreSeZwkUalmY9AB1NSVxnxDvWbTrfQ4GIm1J/LfHVYv4z+WRQBzunTSaxf3Wv3CkNdfLAp/ghHQfjWlLIsUTyOcKilifYURRrDEkaABVGABWD41vHtPDFwsRxLOVgj+rH/wDXTEaPwnsWv7vWfFE683c/kwE/8804yPrz+VeoVj+FdLTRvC2m2CLt8qBdw/2jyf1JrYpDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5PxgraZc6f4kiHNjIEuMd4GOG/LO78K6qN1ljWRDlWAIPtUV5aQ39lPaXC7oZkMbr6gjBrn/BV1KNPn0i6bN1pkpgYnqyfwt+PNAHT0UUUAFYeseD9A1+6W51TS7e6lUAK0qBsVuUUAQ2lpBYWkdrbRiOGIbUQdAKmoooAKKKKACiiigAooooAKKKKACiiigAooooAydX8S6TomFvbtRM33YE+eRvog5P5VkDUvE+uj/iW2K6Vat/y8XgzIR7J2/EVuwaJpttezXkVnELmY7nkIySa0KAOZtPBOni5S81WSXVb1TkS3Z3hD/sqeF/Co7/AEXUfEOpvbagBb6HARtgjbm5P+1jovtXVUUAMiijgiSKJFSNAFVVGAAOgFcL8WdHkv8AwkdQtlzd6ZIt1GR6Kfm/TNd7UVxbx3VtLbzLuilQo49QRg0AecaTfJqWlW15GcrLGGq5XKeCt9l/amiyn95YXTLg9lPT+VdXTEFZGuSGyk03U14+x3kTMf8AYLBW/wDHSa16paxZ/b9HvLXGTLEyj6kcUAelowdFcdGGRWJ4z1VdF8HarqDHHlW7Y+p4/rT/AAlqH9qeFtOuyfmeEbvYjiuc+Lul6xrngxdM0e1aeS4uo1lCsBtj5yeT9KQyh8DdEXTvAEV/ImLrUZHnkYjk/MVH8s/jWP8AEfPiX4q+FvDUPzrbSrd3C+gByf8Ax2vVNC05dI0Gw09QB9mt0jOPUAA/rXnsehazonxX1jxE+lT6lFd24SzeFkGxuOG3MMDHFAHo13qNpp1lPPK5MdsoMgiUuyj/AHRk1h6d8QfDur2Ju7C5muEEjReXHbuZCy4zhMbiBkc471d8NaRPpmmyfbpFmvbqRprhhyNx7D2FcJ8F7OCP/hJbhYwJDqTpn0A//XQB2tp420G9juWiu2WS2YJLBJGySqx6DyyN2T245qXT/Fuk6jqn9mJJPDelC6wXUDws6jqVDgZ/CuD0ezgk/aC16VowWS1iYfUqBn9KteNCY/i74NkTh2DoSO4OeKAO91rXdO8P2IvNSuBDEXEa8FizE4AAHJP0rMh8caM99DaTm6s5ZziI3lrJCsh9AzAAn2rN+Iutabp9vptjdaUuqXt5dKtnbPwokHIcnsB681yfxTh11PBttc6rdWUYW9g8uC3jJKtzjDnB9e1AHqer6xaaJZG8vfNEIOCYomkI/BQTiqHh/wAY6J4otbi50i6a4itziRvKYYPXHI5q7pd5b3tlHD5iyyxxJ5ykdCVB5/OvIfFEc3hnxDqd74U+0HSXwdbjtFBERJ+Yx8/fxycdKAPTNB8c6D4mumt9JuZZ3XO5vIcKMf7RGK6OsbwsNFbw/aSaCITYFB5ZjH8/etmgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAJABJ6CvL2uv7c8V6hqmc29uTaW30U4Yj6sDXb+K9U/sfwzfXo++kZCD1Y9BXE6NYnTtHtbVuXSMBye7dz+dAF+uW1yI6x408O6IOUMxuJh6Beh/OuprF8EQf2n8U9Yv2+Yafbrbr6Asc/0pgj1roMCiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXIayToPjHT9YUYtb7/Q7r0DdUb8xt/wCBV19Zuv6Wus6Hd2J4eRMxt/dccqfzAoA0qKxfCmqNqugQSS8XEJME69w68H+h/GtqgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPH9Yi/sb4uzL0h1S23r7yA8/pXQVn/F23+y3Hh3W0H7yC9EBP+y4Of5VfBDAEdDzTBi0UUUCND4bP/xTMsB6293LFj0wRXYVw/w+fbd6/bf3LoSY/wB8H/Cu4pDCiiigCvfWv22zltvPmg8wY82EgOv0JBH6VzfhvwBp3hWa4k03UNSxcEtLHLKrKzH+L7vWusooA46z+HOnWPiSTX4tU1Y6hLjzXaZCHA7EbOlO1j4eadreuw6zdanqq3du2YDHMgEXOflGz+ea6+igDA1zwhpviGCzW+afz7Nw8F1G4WVGHfOMfpVW+8CWGr2D2msX1/qCMuFM8i5jOeq4Uc8dTmupooA5lPBNnFo76dDqOpQ+YwMlwkyiV8KFAJ24xgAcCptA8H6f4d0OfSbSa6kgmZmd53DuS3XnHPXvXQUUAch4X+HeneEbkSaZqWq+Vli1tLOrRMSCORtB754I5FdfRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBwvj+f7Xf6Roy8rJIbmYf7KdPzOahqjcz/wBoePdYuD8y2ix2iH0+UOcf991epiDpVP4QRedFr+qY/wCPm92Z9dg/+yp2pTfZ9Lu5v+ecLt+Sk1pfCW28jwBay4/4+ZHn/M//AFqQzuKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCQASTgCmySJFG0kjBEUZZmOAB6muEU33xBuZNk0tn4ZjbaCnyyXxH8k/nQBHpGv6Za/Eq+02xvI57e/QSN5R3LHcLwRkcZIxx/s16DXKeIPDdtb+GBHpFtHBNYMLi3CDHzL1/MZre0fUY9X0i1v4vuzxhsf3T3H4HI/CgC7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcP8AFu1M/wAP7ydRlrV45l+oYD+tZumTC40u0lBzviU/pXYeLrQX3hHVrc87rZz+Qz/SvOvBdwbjwjp7t94IVP1BNAG/RRRTEP8ABPy+LdfUdDFASPfDV3tcD4M/5HLXB/0wg/8AZq76kMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApksghheRvuopY/hT6x/Fd0bLwrqU6nBWAgH68f1oA4Dw9mW1ub5uWvLqWX8NxVf0ArXqlo8AttGsoR/DCmfrjmrtMRl+JH8vw3qLf8ATu4/MYrrPhzH5Xw90VPS3/qa4vxi/l+EtRb/AKZY/Miu/wDBcfleDdJT0t1pDN2iiigAooooAKKKgvGuUs5Ws40kuAp8tHOFLdsmgCeivJbr4n+JrXxzF4S/sKxk1GQAjZMSoBG7JOfQGuqk1Px1D839gadMo6ql0VP4ZzQB2FFcZ4a+Ithrusz6Hd20um61B9+0nOc/7p7/AP167OgAooooAKKKKACiiigAooooA43xlJNrGo6f4UtnKC8Pm3rqeVt15Yf8Cxt/GuttraGzto7eCMRxRqFVVHAArlPDw+3eO/EuoN/ywaOzj9gFBb9RWj4zg1u58MXUXh+UR6gQNjcZxkZxnvigDeIDAgjIPBFcl4b3aL4j1Pw/IcQO32yzz/cf7yj6NuP41o+D4NZt/DNpFr8ok1EA+Ywx+Gcd6wPiTrFp4a/snXHfF1bz7VjHWWM43rQB3lFcl4O+IWkeM/MishJFcxLueGQcgex711tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBU1Vd+j3qf3reQf+OmvI/AR/wCKYVP7k0i/rXsV0u+0mT+9Gw/SvGvAR/4k14n9y/mX9RQB1VFFFMQ/wWC/jDXXH3VhgUn3+au9rh/h+m6/8QXH965WPP8Aug/413FIYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXK/EWUp4KvEHWZo4x+LD/CuqrjfiQ3/EksIR/wAttQjQ/Tax/pQBnxoI41QdFAFOoopiMDxsu/wfqIH/ADzB/wDHhXo3hJxJ4S0tx3t1rgfFKeZ4X1Ff+mDH8ua7PwBJ53gPRn9bcfzNIZ0lFFFABRRRQAUE4BNFYHjbV/7C8GatqIba8Ns5j92xwPzoA8n+Go/4Sf40+IfETfNDbb1gb0ydoH/fJNe7MwVSzEAAZJPavD/gj4Z1M+EJtUtdWax+2zklfID5C8A5JFWviPFr/hiC31PVdbudV0GSYRXVrGfIbkEjpkEcHigDBs4p/GX7Qz6ppIJsNOlXzbhB8pCjBGe5zkfhX0LWL4VtdIt/D1m+iWsdvZTRiRFRcdR3962qACiiigAooooAKKKKACiioLu9tbCAz3dxFBEOryOFH60Acv4Q/d+IvFcB+8t+H/Bl3D+ddeSACScAV5omq6hP46u9Q8Lac99a3lssc08uYolkUgBssMsMDsDW+PCl/qxD+I9VedDz9ktspCPr/e/KgCe98a6bFctZ6csmqXq8GGzXftP+0w4X8a4L4heDvF3jS0gvWtraF7fPl2ay5bB7k5xn6V6xY6bZaZbrBZW0cEa9FRcVYkcRxO5GQoJoA8Q+DXhC+0rxRf3OpK1vcWsYT7Oxwx3DqR6YNe41y2koNdv9M8WWB8iG5tds8Mn3nUjK9MjIOK6mgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAZM2yCRvRSf0rxfwEP+JXqL/39Snb+Vexai2zTLt/7sLn/AMdNeQeAh/xTzv8A37qRv1oA6iiiq2o3QstNuboniGJn/IZpiNf4bru0O9uT1nvpXz6jjFdlWB4KsTp/hDToGGJPKDP7k1v0hhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcX8SP8AkHaOf+onH/6A9dpXGfEj/kFaT/2E4v8A0B6AKVFFFMRQ1uMy6FfxgZLW8gH/AHya3vhbMJvh1pKg8xRmNvqCf8azpEEkTxt0YEH8aj+Dk5/4Ru/sXPz219IMeinGP5GkM9GooooAKKKKACvIP2gtcjtfBcOlxyr5t7OAyg8hV5r1yWNZomjfO1hg4JB/MVx9z8KfBl6wa70h7lh0aa8ncj83oA0/A+lLongvSdPGN0NugfHdscmvNv2jb6SLwrptkqnZNdb2YdPlUjH/AI9+leq6N4d03QEkTTo5o1kxkSXEkvT03scfhUfiTwzpXivSm07VrYTQk7lOcMjeoNAGfoN7a6B4F0U3LEBreJEVRlnZhkACsnxd43ls/E1p4Y0yWKC7mXzLi6mUssCewHVsdK2NJ8E2emS20kt7e3/2QbbZbpwVhHbAUAE+5ya5++0SbR/ilc+JZrB77Tr+2SNzHH5jQOox09Dgc0AWLTUbyPXdNttM1e91bzJD9tE8eI0TafmBwMc445rvq56LW7y9nig0vSJ44948ye6jMaKnfaO5xXQ0AFFIzBQSxAA7mue1DxlptpcG0tfM1C96C3tV3kH3PagDoqy9U8RaVo6/6Zdor9o1+ZyfZRzWK1p4q8Qf8fNymiWbf8s7fDzkehY5A/AVq6V4W0nSD5kNsJLn+K4nJkkJ/wB5s4/CgDJOr+JNdO3SNPXTrQ/8vd9y5H+zGP6tVmz8F2YmF1qtxPqt3133B+QH2QcAfXNdNRQA2ONIkCRoqKOiqMAU6iigAqK6/wCPSb/rm38qlpkqeZE8ecblIzQByfgu2e8+F+m20czQvLYKiyL1QlcZFaPhHVJtS0RVu/8Aj+tmMFyP9tepq5oGkroWhWelpIZFtoljDt1OBisqK0uNK8dSSwQu1jqcOZSo4jlXoT9Ru/HFAHT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZ3iCZbfw7qUrHAW1kP8A46a8s8BoV8IWbkYMm5/zJrt/ibefYvh7q0in52jVF9yWA/lmub0C3FpoFjCBjbCv6jP9aANGsbxKDPpsdiv3r24itsezuFP6E1s1Usrf+1PHOnWvWKyRrqUe+ML+pBpiPR4IxFbxxgYCKF/IVJRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx3xJT/AIpy3n/54XsUn8x/WuxrnPHkH2jwVqSgfMqK4/BgaAMKiobSTzrOCX+/GrfmKmpiCsv4Zy/Y/GnijTicCRo5ox7cg/zFalc3DN/YvxZ0m9zti1GF7Vz2yMHmgaPZKKKKQBRRRQAUUUUAFFFFABRWbquv6Xoqbr68jiY/djzudvoo5P5VhjW/EWukro2m/YLY9Lu/GCR6rHyfzAoA6i6ureyt3uLqaOGFBlnkYKB9Sa5lvGT6kxi8N6dNqR6faSNkA/4GeD+BqS38FWss63WtXMurXKnINx9xT/sp0FdNHGkSBI0VFHQKMCgDlP8AhGNU1kh/EWrSNEf+XOzYxR/QkYLfia6HTtKsNIthb6faQ20Q/hiQLn3OOtXKKACiiigAooooAKKKKACmTOY4JHHVVJH5U+orr/j0m/65t/KgDM8K6rNrfhfTtSuFVZbmBZGC9ASM1rSOI42cgkKCSAMmua+Hf/JP9E/69E/kK6egCppmpW2r2Ed7aPuhkzgkYPBwcj8Kt1yOiMdD8XahobfLbXY+22npnpIo+nyn8a66gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzj4x3OPD+m2CnLXeoRoV9V5J/pUkKeVDHGOiqF/IVkeOJf7X+J+kaaDmPT4GuJB2y2AK2qAYE4BJqx8PYPtJ1TWmGftNwYoj/0zT5f1xmsXXbuS00x/IUtcykRQqOrO3AFegeH9JTQ9AstNQhvs8SoW/vEDk/jQBpUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVR1q2+2aJfW/eSBwPrjir1HUYoA8s8PSmbQbPd95I/Kb6p8p/UVp1ladEbDW9c0s8CC7MkY/2XAf+bGtWmIK5bx1E0elW2pR5EljcpNuHZc8/0rqaqapZJqOl3No4yssZXHv2oA9C0+6W+062u0IKzxLIMe4zVmuC+E2sPe+FTptw2brTJWtnz1IByD+uPwrvaQwooqK4uYLWJpbiVIkUZLOcCgCWkJAGSQAO5rlpfGYvZGg8P2E2pyg4Mo+SFT7tUY8NaxrTiTxDqrLCefsVj+7T6M3LH8CKAL2o+MdLsZfs8LSX12eBBaLvbPueg/E1QEPizXzmeWLRLI/wRfvJ2HueAv610WnaRp+kxeVYWkUC9yi8n6nqfxq7QBiaX4T0nSn82OAz3J+9PcHe5P4/0rboooAKKKKACiiigAooooAKKKKACiiigApGUOhVhkEYNLUVyStrKwOCEJB/CgCOwsLbTLGGytIxHbwqEjQdgKs1z3gW6nvfBOkXNzK0s0lsjO7dWOBzXQ0AZupaNDqN7YXjO0c9lKXR17gjBU+x4/KtKiub8Oapdvqmq6RqUm+6tZt8TkAb4W5U8ehyv/AaAOkooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiuc8d66PDvg7UL4NiXyzHF672+UfqRQB51oU39r+L/EOtnlGm8iE/7I6j88V1FYfhLTTpfh22icfvpB5sv+83WtPULxLCxluZDwi8D1PYUxBott/bfjZMjda6Uokb0MzdB+Awfxr0mua8DaPJpXh5JLlcXl4xuZ89ctyB+AwPwrpaQwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA878UQ/YPHdtcgbYtQtfLJ7F0JP54YVJWr8QNPe68ONeQLm5sHFxHjqcdR+NYttcR3drFcRHMcqB1PqCM0AS0Vh6nrEzXX9maUglvT99/4IB6sfX2qNdYs9Gtks2u5dQvRyUiBkcn8Puj60xBoM/8AwjfxU2E7bTWogPbzV4Ar0/Vte0zQ4BLqN5FAD90OwBY+gHevFPEtpr2r2C6itulk1kTNAgfMxP1HA/OvR/Aen6HqOiWevQRG5vJ0BluLhvMkD/xDJ980hlj+3de1rjRNLNrbnpeX6lcj1VOpp8HgmC5nW6167m1acHISZsQqfaMfL+ldVjHSigBkUUcESxRRrHGowqqMAD2FPoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACorr/j0m/3G/lUtISACT075oA5n4d/8k/0T/r1T+Qrp6jhkilhWSB0eJhlWQgqR7EVJQAVyviWJ9N1zS9fgRiEb7LdBRnMbHg/gc/nXVUEA9RmgAoqtbX9reTXEUEoeS3fZKo6qeuKs0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXlPxKuDrXizRvDcZzFE32u5A9ByAfrXp97eQ6fYz3dw4SGFC7segArxvws82uanqPiq6Uq985WBW6rEDwP5UAdUAFUAdAMCqNhZ/wDCSeK47MrusNNImuD2eQ/dX8MEn6il1a/Gn2LSKN0zkRwoOrueABXY+EtE/sLQo4ZObqYma4fuXbr+QwPwoA3aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBksazRPG4yrggivAdZ1bUvDcl14YsLWZ7iCVljmCkhIScp+O3FfQNcF47sjpuo2niOJcRjFveY/uE4DH6H9BQB5lpkc32by7uHU9jHLw2sQG8/7TswJ/IV0umXP2Z0hs/Dd3BGTgyOEGPc/MTXSKQyhgcg8ilpiEZQylWGQRgisbwBeHw14yvvDUrYs70m4s89AepUfrW1XN+LtNuZ7SHVNNJXUtPcTQkd8c4oGeyUVh+EvEcHijw9b6jDgMwxKndHHUVuUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKiuv+PSb/cb+VS1HcKXtpVUZJQgD8KAOc+HhJ8AaKScn7Kn8hXT1geCrG503wbpVndxGK4ht0R0PUECr2t67p3h7TZL/AFO5WCBO56sfQDuaANGiuRtPEXiHV7EX+naAkdsw3Ri6uNryr9MfL+tWvCfjGy8VRXSRxvbXtnIYrq1kOWjYe/ce9AFa9/4kXjq2vR8tpqyi3m9BKB8h/HAFdbWDq9pa+LNHvLK2udksUhVJwM+VMh4P4MP0rbhV0hRXYM4UAsBjJoAfRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVTVNRt9J0y4v7pwkMCF2JoA8/+K2qS3KWPhWyfFxqDgzEfwRA8/wBaktbeHT7KO3iASGFAo9gK5vw4LrXtXvPFeoKRJdMVtYz/AMs4hwP0rWuYJvEOqR6BZuVRsNeyr/yzi7r9W6fjQBo+EdMOv6udfulP2K2JSxQjhm7yf0H1NeiVDaWsNlaRW1ugSKJQqqOwqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACq1/Ywanp89ldIHgnQxup7gjBqzRQB5Vo5mtHudHvGJurB/LLHq6fwt+NatWfHOjzRNH4j09C1xari5jXrLD3/ABHX8Ko21xHd20c8LBo5F3AimIlooooA5nRtQPgTxuEc7dF1h9p/uxS9vpnpXsoIYAg5B5Bry/XNHg1zS5bKcY3DKN3Vh0NXvhz4rmnMvhnWX26pZD92zf8ALaPsQe+KQz0OiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa7iNGduijJp1RXX/HpN/1zb+VAEOl6lbaxplvqFmzNb3CB4yy4JB9q8Z8QyTeOfjpY6BI+7S9IPnyRdi6jqfXnA/E16V8O/8Akn+if9eifyFcfcaRceDPi5ceKHtJ7jSdUhMUssERkMDkhslVycHbjOKAPVlAVQqgAAYAHavAv7Yfw38evEsNnDvkvYUWGFf45TGuB+ZJr1mXxpZy/utMtL2/uW+6kds6r+LsAo/OvOX0rU/D/wAZLfxVr1pvtby2YM1rE0qwPgKqnAznAHPvQB6t4d0ptG0S3tJXElxgvPIP45WOXb8WJNV/7YuLfxj/AGVdBRb3MHmWrY5LL95f1z+FXtG1GTVdOS8ktZbYSM2yOUYbbn5SR2yMHB5rJ8a2Ekukx6nag/bNMkF1FjqQPvj8ULCgDpaKrafex6jp9veRHKTIHFWaACiiigAooooAKKKKACiiigAooooAK8l8f6s/ijxHD4SsnP2S3Imv3U/kn+fWur8f+L18M6UsNr+91W8PlWsQ65PVvoK4bS7SPwtpD3N4xm1K7ffIRy8sh6KPWgDUvbl7NLbTdNhEl7PiO2hHQAcZPoBXc+GPDsXh7TPJ3+ddSnfcznrI56n6egrN8HeG5rEPq+qANql0OV6iBOyD+vvmutoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEZQylWAIIwQe9eX3tk3hXxCbIgjS74l7Vz0jk/iQ/XqPxr1Gs7XNGtde0uWxul+VuUcdUYdGHvQByFFZllNdWF9JouqjF5CMxy9p4+zD37H3FadMQVznifR55vJ1jS28vVbE742H8Y7qa6OigDe8G+K7bxXokdyhCXUfyXMB+9G468eldFXimpWd94Z1geJdBU7h/x+Wo+7Mvrj1r1Xw74isPE2kRahYSZRx8yH7yN3BpDNaiiigAooooAKKKKACiiigAooooAKKKKACiiigApkyGSCRBwWUin0yV/LheTGdqk4oAzPDOkyaF4bsNMlkWR7aFYy69DgYrVIBGCAR71xWk/EnT9R0q2unsb4SSoGZIod4BPYHjNXf+E2STi20LWZnPQfZgAfxzQB06oiDCIq/QYpWVWGGUEehFcsdd8TXXFn4YEWf47q624/AL/WmGw8ZaicXOqWWmxf3bSEu/8A30xI/SgDqZZobeMvNKkaDqzsAB+dc5eeNdOLtbadBcarcHjy7WPK/ixwuPxpIfAums4k1G4vdTk7m6nOM/7q4H6V0VrZ21lEIrW3ihjH8MahR+lAFDRr6eW3SG/toLK7OWW1jl3lU45PArVrk/F0Tabe6d4khB3WcnlXAH8UL4B/Ihf1rqo3WWNZEIZGAII7g0AOooooAKKKKACiiigAooooAKzdd1uy8PaTPqN/KEiiUnHdj2A9zVjUdRtdKsJb29mWKCJSzux6CvEdV1lvGeqLq+qCSPRIHxY2Q+9cN2JHegB9nPJf3s/jDXgfOlOyytupRT0AHqa7/wAKeGJpLhdd1tc3bD/R7Y8rbr/8Ue9R+FvCs010mta3EFlUf6JZ/wAMC+p9W/lXdUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYPinw4niCwXy28m+tzvtpx1VvT6H0rjNN1GSd5bK9i+z6jbnbPCfX+8PVT1Br1Guc8T+FY9cRLq2kFtqkA/cXAH/jreq0AYVFZ1hqEr3Eun6hD9m1KD/WRHow/vKe4rRpiAgEYIyDXJyLfeBdafXdGiaXT5jm9sl6e7KOxrrKCARg9KAOs0DxBp/iTS47/TphJE45HdT6EdjWpXilxYal4R1N9c8NDMbHN1Yj7si9yB616d4W8V6d4r0tbuykAkXiWFuHjb0IpDN2iiigAooooAKKKKACiiigAooooAKKKKACorr/AI9Jv+ubfyqWmyIJI2Q9GBBoA5r4d/8AJP8ARP8Ar0T+Qrp6o6RpcGi6TbabbbvJt4xGm45OAKvUAFFFFABRRRQBXvrSO/sZ7SYAxzIUIPuKqeHrK603RLayvJVlkgBQOO6Anb+O3FadY2ta0+j32mq8Sm0upjDJKT/q2ONv4HmgDZooooAKKKKACiiigAqtf39rpdlLeXkyQwRLud2OABUGs6zY6Dpkt/qE6wwRjOSeWPoB3NeI3mp698VtcEFrbuulxNlIjwg/2pD6+3WgCTxH4mufH+qwQRQT/wBjrJi3tEyHvGB6n/Z/lXpHhXwYNPkj1PVhHLqAXEUSj93bL/dQdM+9XfC3g2z8Nx+aWFxfuoV52GMD+6o7KPSuloAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDB8SeF7bxBAr7zb30PMFyg5U+h9R7VxKXt3pl6NN12IW9z0jnH+qnHqD2Psa9Uqlqmk2Ws2T2l9AssTevVT6g9jQBxlFZ9/puqeEZD53mX+j5+ScDMsA9HHce9Wra7gvIRLbyrIh6FTTETVzGpeHLm1v/7Z8O3Bs9SXlkH3JvYiunooAm8I/EW31iX+y9Yi/s7WE4aKThZPdTXdV5Rrfh6y1yEecpjuE5jnj4dD9ag0rxtr3g5ks/EsLahpo+VL6EfOo/2h3pDPXqKoaTrWna5ZrdaddRzxMM5U9PrV+gAooooAKKKKACiiigAooooAKjnYpbyuvVUJH5VJUV1/x6Tf9c2/lQBj+DdRudW8IaXf3bh7ie3R3YDGSRW7XMfDv/kn+if9eifyFdPQAUUUUAFFFFABWX4h0pNa0O6sm4Z1yjd1YdCK1KKAMTwpqz6xoEE0/F3HmG5X+7Kp2t+oNbdV4ba1smk8mOOIzOXbHG9j3+tWKACiioLy9ttPtnuLudIYUGWdzgCgCeuS8ZeP9K8IWxWVvtF+4xFaxnLE9s+grnNR8f6t4nuX0vwNZGU52vqMwxGnbI/x/StTwt8MrHSZ/wC0tZlOq6u53NNNyqn/AGVoA43S/CXiP4laiur+KJXtNMBzFbDIJHsO31P5V7Dpek2OjWKWdhbpDCgwAo6/WrgAAAAwB2FLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIQGBBAIPUGuO1jwJE9w9/oMw068PLRqP3Mp/2k6D6jBrsqKAPK/7UmsLtbHXLY2N0eEY/6uX/AHW/pWmCCMg5Fdxf6dZ6pava31tFcQP1SRQwNcZeeA7rT8yeHb8xoOfsdyS0f0B6rQBHTXRJEKOoZSMFWGQay31iTTrgWuuWcunTdBJIMxP9HHy/hnNaiSJIgeNlZT0KnINMRy8/hi70m+Op+FbxrC6zloM5ik9ip4rf0v4rLazJZeK7B9OuDwLhQTE/vntVuobq0t72BobmFJYm6q4yDQM76zvrXULZLi0njnhcZV42yDVivFF8LXuh3DXfhXU5bCQnLW7MTE/1Fa9r8UNW0giLxPoUqoODdWg3p9TjpSA9UorC0PxloHiKNTpupQSO3/LJm2v/AN8nmt2gAooooAKKKKACkIDAgjIPBFLRQBFb28NpbpBbxJFCg2oiKAFHoAKloooAKKKKACiiigAoorL1jxHo+gwmTU9Qgt8DO1nG4/RepoApeMrC5u9Ca4sc/brJhc24H8TIc7fxxitHTdXtdQ0S31NZVWCWISbmOABjnNcLJ8T7zWpTb+ENAutRJOBczIY4fzOMfjWZo3wx1nU2ki8VX0senK/mx2NtL+7JPJHB4xQBu6r8UrL7WdO8OWkus6geAIBlF9yR1qjB4D1zxbdJf+Nr9hADuj0y3bbGo9GI6/zrvdI0LTNBtBbaZZxW0XcIoG4+p9TWjQBWsNOs9LtEtbG2it4EGFSNQB/+urNFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBDc2lveQtDcwpLG3BVxkVyl58O9OLtLpNzPpcx5xCcxn6qf8AGuxooA8zutN8U6MSZrKLVLcf8tLRtsgHqUbA/Imq0fiLTy2yd5LSToUuY2jx+JGP1r1Wq11p9neqVurWGYH/AJ6IG/nQBwsU0U67opEkX1RgRTmVXGGUMPQita7+HmgzsZLeO4sZT/HazFf0OR+lZU3gnxDasTp+vxTRjol5bbm/76Vh/KmBgaj4N0fUXMvkG3nPPmwHY2ahhtPGeiADSfEQuYl+7DeqSAPTjNbj6Z4vtP8AW6XZ3a+sFwVP5FT/ADqq+o39r/x/aBqUH+0qB1/PNIBkPxJ8T6YQuteGTNGOs9nIDn6LW3ZfF3wpcAC6uJ7CQ/wXULAj8s1gnxNYIcSpcx/78DVDJqvhu7z5xt3J674Tn+VAHoln4v8ADt+AbfWbNs/3pAv88VrQ3MFwMwzRyD1Rwf5V4rcaT4KuvmeK2Df3lZlIqk+heG0ObbXr+29orkgfyoA98orwH7Daxf6nxlqK/wC9IW/pTDPfxHFr411Bz2C2xegD6BorwJY/FV3wms69c5/552irn/x6pU8JeMr3gNrWT3nuREP0BoA91kmihXdLIiL6swFZl34o0KxBNxq9mmO3nAn8hXlEHwe8R3jhr7xBJCndGleb+q1u2HwO8PwuJb66vLqTvhwqn8ME/rQBs33xa8H2QIXUjcuP4IY2JP5gCsVvibr+suYvDXhG8mBHEt0REMevPB/Ouv0rwL4Z0Yf6HpFuG7s67yfzroERY1CooVR0AGAKAPNE0L4ka/htT1y20m3frHaAmQD0Pb9a1dJ+Fnh+wkFxerLqd31Mt024Z9QO1dxRQBHDBDboEhiSNR0CrgVR13VTouky6h5DTJEVLqvUKWAZvwBJ/CtKori3juraW3mUNFKhR1PcEYNACwTJcQRzRnKSKGU+xqSuX8F3EkFtd6Hctm402XYCf4ozyh/mPwrqKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAAgEYIzVeSxs5f9ZaQP/vRg1YooAzzoOjk5Ok2JPr9nT/ClGiaSOml2Q+lun+FX6KAKY0nTV6afaD6Qr/hViOCKEYiiRB6KoFSUUAFFFFABRRRQAUUUUAFFFFABRRRQBTXTLRNVfU1ixdPGImcMeVByAR0q5VTVLV77S7m2jkaN5IyFdTgqexz9azPCOqPqWhItwT9rtWNtcA9d68Z/EYP40Ab1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzUGnXWmeN57i2hLafqMIaYgjEcy8Z/EbR/wABrpaZNIIYXlKlgilsL1OKAH0VS0jVbfWtMhv7Ut5Uozhhgqe4PuDxV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCMjBoooA5HQx/YXizUdEPFtdk3toD2Lcuo/wCBbj+NddWfe6Rb31/Y3sm5Z7Ny0bKcdRgg+1aFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFee/FD4hXvgddJh0yxhvbzUJWRYpSegwOMHqSwFc7/wn/xY/wCiex/+Pf8AxVJO42rHslFcRpviLxhP4C1LVr/w6tvrcIf7Np6BiZMAYJGcnJzwPStDwBqfiHWPCkF74msBZai7tmIRmM7M/KSpOQaq2rRN9LnT0UUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFZ+uaza+H9DvNWvX229rEZG9TjoB7k4H41w3wv+KM3xBu9St7jTY7JrREdAkpfeGJHOQPQfnQtXZA9FdnpNFFFABRWP4i8UaN4U05r7Wb2O2i/hUnLyH0VepNcH4G+Ls/jrxtNpNno4t9OjhabzpZCZMDAGQOBkketC1dkD0V2eqUUUUAFFFFABRWB4x1PW9I0B7vw/pY1O/EiqLc55U9TwR0rzHUPif8TNKsJr6/8AAkFvawruklcthR6n5qVx2PbaK8P0v4qfEnW9Oi1DTfA8FzaS52Sxl8Ng4P8AF6g10moeKfFZ+Emu6zqennQ9XtwfJVBkhcrhuc+ppy91NvoJatLuemUVx/wu1a/1z4daVqOpXLXN3MHMkrAAth2A6ewrsKclZ2FF3VwooopDCiiigAooooAKKKKACivJ7rxRrSftDW3h5dQkGkvbh2tcDaT5ROc4z1HrTvjb4n1rwzZaE+jX8lo1xdMkpQA7lwOOQaFqk+/+dg6tdv8AK56tRWH4ov8AVtO8I317otn9s1OOHdBDtLbm47Dk8ZOO+Ki8D6lrer+ErK98Q2P2LUpA3mQ7CnAJAJU8rkYOKO/kK+ifc6GiiigYUUUUAFFFFABRRRQAUVw/xI1/xboVrpr+FNH/ALReafbcfuWl2LxjhSMA889sV2sTO0KNIuxyoLLnOD3FC1VwejsPoorz/wCMmu6n4d8ASX+k3b2l0LmJBIgBOCTkcik3ZXGlc9AorH8J3c9/4Q0a7upDLcT2UUkjnqzFASa2KqS5W0TF3SYUUV598Zde1Tw54Ba/0i8e0uhdRp5iAE7TnI5BqZOyuUlc9BorI8K3U994S0e7uZDJPNZxSSOerMUBJrXqpKzaJi7pMKKKKQwooryfwd4o1rUfjX4n0W71CSXTbRHMFuQMJhlAxxnuaFrLl9fwB6K/9anrFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWb4g1iLw/wCHtQ1eZS0dpA0pUfxYHA/E8Um7K7Gld2RpUV4T4aT4o/EPTW8RQeK4tItZZGFtbJF8pAOOw6Z4ycnivatJgvbbSLSHUboXV6kSrPOFCiR8ckAAcZ9qqzS1JvroXKKKyf8AhJdL/wCEp/4RsTk6n9n+0mIIcBM4yT0z7UhmtRVDW55LbQNRnhcpLFayujDswUkGuF+CfiLVvEvgu4vdZvXu7lbx4xI4AIUKpA4A9TQtW12B6W8z0miiigAooooAKKKKACiuZ8f+Jbjwh4NvdbtYIp5rcpiOXO07mC9vrXnGn/E74m6rYQ31j4EgntZl3RyoWww9R81JO9xtWPbaK828J+LviBqviK3tNd8Hpp2nuG8y5G75SFJHU9zgV6TVWJuFFFFIYUUUUAFFZN/4l0vTNd03Rrmcrfaju+zxhCd20ZOT2/GtajpcPIKK8n+DfijWvEWpeJ49W1CS6S0uFSAOANgy/AwB6CvWKOifcOrXYKKKKACiiigAoory7xD4z+I+n6/e2mk+CkvbCKTbBcHd+8X1+9SvrYdup6jRXgz/ABk8fR+IE0F/B1ququu5bUl95GM/3vQE10ejeNviXea1ZW2o+B0tbKWZUnnG792hPLfe7VSVyW7Hq1FeT3XijWk/aGtvDy6hINJe3Dta4G0nyic5xnqPWvWKS1SY3vYKKKKACiiigAooooAKKKKACiiigAooooAKK8n+DfijWvEWpeJ49W1CS6S0uFSAOANgy/AwB6CvWKOifcOrXYKKKKACiiigAooooAKKKKACiiigAooooAKKK8/+Mmu6n4d8ASX+k3b2l0LmJBIgBOCTkcik3ZXGlc9AorH8J3c9/wCENGu7qQy3E9lFJI56sxQEmtiqkuVtExd0mFFFFIYUUUUAFFFFABRRRQAUUUUAFFFFABRWTrniXS/Dn2L+0pzGb24W2gCoWLO3QcdvetagAooooAKKKKACiiuEufEHjCP4r2+jQ6Lu8NtFue98psA7SSd+cAhsDbQt0g6Nnd0UUUAFFFeT/EPxRrWkfFLwjpdhqEkFjeuguIVAIkzJg5yM9KFrJR7g9It9j1iiiigAooooAKKKKACiiigAooryf4O+J9a8Q6v4ph1bUJLqO0uVSBXA+QbnGBgew/KhauwPRXPWKK4S58QeMI/ivb6NDou7w20W573ymwDtJJ35wCGwNtP+JGv+LdCtdNfwpo/9ovNPtuP3LS7F4xwpGAeee2KOifcOrR3FFMiZ2hRpF2OVBZc5we4p9ALUKKKKACiiigAooooAKKKKACiig9OKACiuE+H/AIg8Ya1qGtReJtF/s+C3mC2j+S0e8ZOQMn5hgD5h613dHRMOrQUUUUAFFFFABRXk/hHxPrV/8bvE2iXWoSS6baxuYLcgbUIZAMcZ7mt3xf4g8YaZ4y0Gw0PRftmlXLAXk/lM2zLYOWBwmF5yetC1UX/MD0cvI7uiiigAooooAKKKKACisnQ/Eul+I/t39mTmYWVw1tMShADr1Az1HvWtQAUUUUAFFFFABRXk974n1qP9oWz8PpqEg0l7be1rgbSfLY56Z6gd69YoWqTB72CiiigAooooAKKKKAPDvGf/ABUX7RHhrSB80Wnokrj0IzIf0C17jXzTp3h/V/iN8WfFOo6Pr02jtaTFFuod24rnYFBVlIyF9a7mw+FXjO21G2nufiZq08EcqvJD5kw8xQclf9Z3HFEPgin11+8J/G320+43fi542vvBHhm2utL8r7dc3QiQSpuG3BJ4/L866htXXR/CaatrsyR+RarLdOFwN20ZwPrwBXlHxcP9v/FLwb4ZU7kEgmlX2Zxn/wAdQ1Z/aG1KdNA0fQ7div8AaN184HcJjA/NgfwqVfkut27L8h2XPZ9Fd/mV9P8AGnxM+IM8974Rs7HTNHicpHLeAEyEe5ByfoMD1qPUPix4rsbmw8LXVhb2vilr9IJ2Cb4nibGHXnqc/p+FewaBpFvoGgWOlWqBYrWFYxjuQOT9Scn8a8Ynjh8SftQx+Vh4tMjDSEf3kT+jMB+FWrKaitv8tSbtwcnv/mek/EzxVc+DfA11qtmYzeB0jh8xcqWZhnI+ma1PBt/qGq+DtK1DVdn226t1mk8tdqjdyMD6EV5h+0Dcver4a8OQkmS+vN5Ue2EX9XP5V7LaW6WdlBbRjEcMaxqPQAYFKPwtvv8AktRy0aS7Hnet+ONYi+MukeENMMH2OSISXhePcw4Zjg54+UD86u/FrxpeeCfCcV7prRC9nuVhj81dwxgljj6D9a4z4eyL4n+O3irxAp3wWiGGFu3UIMfgjfnTPjcjeIvHHhHwnG5Amk8yTHYOwXP4BWpJNxglvL/P/IeilJvZf5f5mk/i34i+MUWXwTZWtvpsKhDqF2FH2qQD5igb+HOe349q77VvEkfg7wWmreIpw08MCCbywAZZiOVUdOTmtuxsrfTrGCytIlit4EEcaKMBVAwK8K+PN/d6h4v8OeHLa1kvVA+0taRnBnYtgL+Sn86cnryx6sUVpzPojTs9f+L/AIvsm1vRbbTNL01wWtoJwDJKvY5YHOfX5Qa6r4UePbzxxot5/advHDqNhMIZvKGFfI4OOx4OR7Vzkmv/ABY16z/s3SfCNtoMLJ5f2m4lGYlxj5c4x+Cmuz+HPgSLwH4fazNx9pvbiTzrqfGAzYxgew/xprr26Cetu52FFFYXjDxLbeEfC17rNyQfIT92hP8ArJDwq/ialuyuykrux5n8Ub+fxr420r4daZIfK8xbjUpE/hUc4P0Xn6lah8EQRaB+0J4i0iBBHbyWY8pB0AAjIH5ZrjPh/wCMNW8NX+p69c+DtV1jUNUbf9rUOqhCd2F+Q5ye+ewrS0DxTcax+0LpurXWj3OkPeRGE29xncf3bKDyq8Egdu1VTVpJdXe/q1+mxM3dN9Fa3yf6n0hRRRSGcLrnwx8Paz4tfxPrLT3Sxwj/AESWQmFSv8WPTGPl6fXNcX8Bof7T1nxX4lZAouLgRRADAVcliB7AFfyr0T4k6r/Y3w61y8DbX+ytGh/2n+Uf+hVhfA7Sv7N+GFjIy4e8kkuW+hOB+iiiGjfkvzf+QT2Xm/yR6PRRRQAUUUUAFcb8V/8AklviD/r2/wDZhXZVxvxX/wCSW+IP+vb/ANmFRU+BlQ+JFD4J/wDJJ9H+sv8A6Nar/wAWP+SW+IP+vb/2YVQ+Cf8AySfR/rL/AOjWq/8AFj/klviD/r2/9mFXiftEUN16/qeX/D3xF421LwTYaJ4J061RLJWW61G+PyB2YtsQd8AjPB/CtO7+IHxB+H+r2S+N7SxvNKun2fabQYK+uCMcgc4I57Gut+CVvHB8KdKKKAZTLI59T5jD+QFYv7RKg/D22JAyNQjwfT5Hp1XySv5hTXNG3qeqy3lvDYveySqtskZlaQngIBnP5V49beN/iD8Qr26k8EW1jp+jW8hjW7vRkyn8QfyA4zya3vH1zLb/AAFuJIid7adboSPRtgP6E1xPw91j4l6b4H06Dw/4O0+700qzxXD3KK0mWOSR5g78dO1Jr35LsCd4Rfc6PRPiJ4n8PeMbbwv8QLS2V7zAtb+24RiTgZ7EE8dAR3Feu188+NNE+KfjmfTJL7wha2j2EpdJLe7izyR1zIf7or6Ej3eWu772Bn60/s67h9rTYdXA/Ef4iP4Q+x6ZpVmL/XtQO22tznCjOAzAcnngDvz6V31fOniy813/AIaMeTRNNh1LULSBRbW08gRceVknJYdNxPWp3kolbJs6W8vPjZo1g+s3I0e7giXzZbGNAXVRyegGcD0Y13/gPxpZ+OvDceq2yeTKG8u4gJyY5B1Ge45yDXGt4m+MbqVbwHphBGCPtaf/AB2k+CXhLxH4V/t1dd077Cl1JHJCgmRwT82cbWOOo61UeqZL0szKvP8Ak6mz/wCvQf8Aolqf+0V/yD/Df/X6/wDJaZef8nU2f/XoP/RLU/8AaK/5B/hv/r9f+S1Mfhh6/wDtxX25en6HpHjXWbvw/wCAtS1axKC6tbcPHvXcucjqKh+HGv33ijwJp2saiYzdXAff5a7V4cgYH0FVfih/ySjXf+vP+oqr8Fv+SUaL9Jf/AEY1Ut5fL9SPsx+f5I5a5+L+t2njvXvDcOkx6jcxzeRpcEKlS7Z5MjZ6Ac9ulJqmu/GjQbV9YvNN0i4s4hvmtoBuKL36Nnj2Jql4Gt4pf2j/ABXK4BeJZmTPYlkBP5E/nXujKrqVYAqRgg9xUq/s4y6tFtrnkuiZzHgXxtY+OPDS6tbJ5MiEpcwMcmJwMkZ7jHINefW3jn4gfEHU78eCIdOsNKs5fK+1XnLSH8j25wF4z1qn8CgLbxb400yL/j0jn+Ve3Duo/SpZPBPjr4a6ve6h4HeHU9IuZPMk06UfMPbGRnHQFTn2puzal0a/EVmrx6pnS+HJvixaeJLW08Qw6TeaVKT513BgGMAZ4A2nJ6fdrc+Ifj208BaGt3JD9pvbhvLtbYHG9u5J7Ad/wrE8F/F+x8R6sNC1fT59G1vO0QT52u3oCQCD7Efia5b4ogXvxx8F2NyM2o8pgp6EmU5/9BFDTbjHu9wTSUpdkX4JvjhqlqupRf2PYpIN6WUiKHx2ByDj8WFbnw9+JN14g1W68NeI7BdO8Q2gJaNeFlA6kAk4PfqQRyK9IrwzxsBYftH+Fri1+WW4jiEu3uCzoc/8B/lTT99R6PQTXuuXVanVfF7xtq/gqx0ibSDAGu7lopPOj38AA8c16DPeQ2enSXt1II4YYjLI56KoGSa8b/aL/wCQX4c/6/W/9BFdj8Wp5Lf4R6y0RIZoEQ49GdQf0JqG7Qb8/wBEUlecV5fqcXY+OviN8RNQu5PBdtZadpFu+xbi7UEufckHnHOAOPWuf+KPiDxhbeEJPD3jTT7fzp5UltNQsv8AVy7T8ysOxwc9B9O9ep/Bq2htvhVovlADzVeRyO7F2z/Ksb9oK3jl+GvmuoLw3kTIfTOQf0NOquXT0/MKb5tfU7bwR/yIegf9g+D/ANAFcTeXXxi1jU7tNNtNH0ayilaOKS4O8yqDgN0Y4P8Auiut8M6jaaR8MtI1C+mWG1t9MhklkbooCCuOtvit4k8TyO3gzwRPfWSuUF3dzrErEemcD/x41dTWo/mRT/horaJ8QfF/h/x5Z+FPHVvaSfbsC3vLYYBJ4B4wCCeOgIrQ/aA/5Ji//X5D/WuA8aX3im9+Jfgp/FGj2mmzLdxiFbecSbl81M5IJxzXf/tAf8kxf/r8h/rWc9aab7/qjSOlRry/Rna+Cv8AkRtB/wCwfB/6AK3awvBX/IjaD/2D4P8A0AVu1rU+N+plT+BehynxC8aReBPC0mqtB9onaQQwQk4DOcnk+gAJriLY/G7VLOPUornQ7NJlEiWjKNwB5A+63/oVdz4/8FweOvDEmkyzm3lDiWCYDOxxnGR3GCR+NebQ+KfiT8MrZLbxHoq63o1uAi3ts2WVBwMsB6f3lH1rNbu/yNHsrHpfge68W3Wlz/8ACYWVpa3scxSMW5yJEAHzHBI5z29OleKWviO88O/HHxW2l6a2o6peSPbWlsDhS5ZTlj2UAE/4V7l4Q8ZaR420j+0dJlYqp2yxSDDxN6MP6jivK/A1vHL+0d4sldQWhSUoT2JZBn8iapJ+1SfZ/p+ZLa9m/VfmX9RvPjbpdnLqsi6LPFEpkezhQMwUcn0J/Bia7f4c+OIvHnhkakIBb3UUhhuIQchXAByPYg11koBicEZBU14r+zrxp/iRR90Xq4H4GlF3bXlf8Ry2T8/0O58caj44triys/B+lWdx9oVjNdXLcQYx2yBzn3+lcLrmt/GHwVp51vVZdG1LT4mBnigTlFJxzhVP4jNdR4o+K0Gk+IT4c0LR7nXdbH34IDtSM9cFsHkd+MD1rmPGevfEm+8D6uup+D7Cx057ZvOkN6ruieoAbr+FTdqPMirXlZnqvhfxBb+KfDVhrVshSO6j37CclG6FfwIIryTRPjF4o1q41HRdO0W3v9dF0yWwRSkMcK5BeQluxx3HWuv+CP8AySfSf96b/wBGNXG/AK3iPiPxhcEAzLOqA9wpdyf5D8q0lH9449LP9DOL/d363/zLGreLvi34LhGra7pml32lqw88Ww/1YPuDkfUgivVvDPiKx8VeHrXWbBj5FwudrdUYcFT7g1Pr1rDe+HtStrhQ0MttIjg9MFTXiXwe1C5g+Dfi0xs2bXz3h9j5OePxFRzWjLyVy+W7jbq7G5efELxd4y8SXmj/AA9tbRbSxbbPqV2MqWzjjsBwccEnGeKhPj/xv4C1yytfH9vZXWmXj7Fv7MY2Hv0AzjqQQDjpXJfCbU/H2meFZv8AhFvC1lqNnLcsz3M1wqMXAAxgup4GO3etbxxZfFbx3oaaXf8AguygRJlmWSG7i3AgEd5T602uW1tdriupXvoe+o6yIrowZWGQR0IpayvDNvd2fhbSba/Qpdw2kUcylgcOFAIyODzWrTkrNpCi20mzB8Y+K7HwZ4cn1i/yyphY4lPzSueij/PQGvNNP1f4yeLbNdX0yPSdKsZhvghnUbnTseQx59TjNQftEO0i+F7NiRby3TmT0yNoH6Ma9sgiSGCOKNQsaKFUDoABxUx1Tk+9ipOzSXqeX+D/AIlayviv/hD/ABvp8Vlq7D/R54uI5vQdSOexHB6YBo+M8viz/hFtTisLbThoP2cG6nldvPPPIVeg7VgfHoC08TeDdRt/lvFnYBh1IV0I/Un869A+K/8AySzxB/17f+zCpm70ub1/AcVaol3sedfC4fEr/hFdF/ss6P8A2Bv/AOWufO2eYd/49cV7xXB/Bn/klGif7sn/AKMau8rap8TRlDa5U1N76PTLl9MihlvhGTAkzFUZ+wYjoK+bdKm+IM/xo1Y2r6YfEiQFZhJnyFQBOF/Db+tfTteH+F/+TnPEn/Xu3/oMdRBfvPkzSXwfNHcaf/wl/wDwhevf8JebD7T9nl8n7H93Z5Z6++a8h+E/iTxQnheXw94O0yG41A3D3Fxd3RxDboQoX6sdp/wPb6E8Rf8AIsat/wBec3/oBry/9nO3jj8DX86qPMlv2DN6gIuB+p/OiOspei/MUtIx9X+RQ1nxf8VfAAh1LxJb6XqWlNIElNsMbM9sgAg+hIIr2TSdUttZ0e01S1Ym3uoVmQnrgjPNch8ZlDfCjW8gHCxkf9/Fqj4UuZbX9n2G5hJ82LSJmQjqCA+KTlaEn2/yGo3lFLr/AMAyLz4heLvGXiS80f4e2totpYttn1K7GVLZxx2A4OOCTjPFQnx/438Ba5ZWvj+3srrTLx9i39mMbD36AZx1IIBx0rkvhNqfj7TPCs3/AAi3hay1GzluWZ7ma4VGLgAYwXU8DHbvWt44svit470NNLv/AAXZQIkyzLJDdxbgQCO8p9abXLa2u1xXUr30PfUdZEV0YMrDII6EUtZXhm3u7PwtpNtfoUu4bSKOZSwOHCgEZHB5rVpyVm0hRbaTZ598bf8AklGr/WL/ANGLVv4W3dtH8MfD6vcRKwtRkFwCOTVT42/8ko1f6xf+jFrhfBPwP8L+I/BmlaveXWqLc3cIkkWKZAoOT0BQn9amG0vVfkVL7Pz/AEPdo7mCVtsc8bt1wrgmud8b6j4q0/Tbf/hE9Kt7+9ml8tvPbCxLg/MRkZHHr+dZfg74TeH/AARrL6ppdxqEk7wmEi4lRl2kg9Ao54FL42+J1h4R1G30i3sbjVdauADHZW3XnpuODjPoATTlbQSvqcnqlx8a9E02bWJ7nRLqGBDLLaQxgsFHJ/hGcD0bNd78PvGUfjnwpDq6wiCYOYp4gchXHXHsQQfxrkbvxN8Ub7S7pj4FsbW2eF93n3ylguDnjcD09qqfs5f8iNqP/YQb/wBASnHXmT6L9RS0s1/WhDc/GHU9L8Z+JdFltFvpoJhBpVpBGQ8shOMMR2A5rd8Kv8Vp9cS58Rpp0OmPE7G2i2blbb8ikjJ647muT8E2UFz+0h4onlQM9sJniyPusWVc/kT+de70o/BFvdocvjkuzPmXxBcePp/jXpS3I0uPXlizZxIxMEaEPwSeSfvfpXtXgz/hPPtN1/wmB0zydi/Z/sXXdnnP4V5/4j/5Og0D/r1X/wBBkr3CnHSC+f5hL47eSPmL4ceJNa0rWfEeleGtLW/1m/uyY/NOIoUUvudzkd2HGf8ACux1nXPjH4RsX1rUk0e/sIcNPFAmdi+pwAce4ziq/wAAreM+IfGNyVHmidYwfQF3J/kPyr1jxoofwNrysAQdPn4P+4ahvlpqXWy/IpJSqOPmHhDxNbeL/C9nrVqhjW4U74yclHBwy5+orcry39n8k/DGP2vJf6V6lWk0k9DODutQoooqSgooooA8N1H/AJOq0/8A69h/6Iavcq8N1H/k6rT/APr2H/ohq9yoj/DXz/Nil8b9F+R88eNdd/4Rv9oddTW1ku5o7REht4/vSyNGVVfzIrqLiX43zRNfxRaJbrjeLBcM4H93Jzz/AMCrK1S3juf2qLASKGCQLIAfUQsR+te6Uor3F8/zY2/ffy/I8/8Ahf8AESXxxZXlvqNotpq+nuEuIkyFYHIyAeRyCCKd8R/iI/hD7HpmlWYv9e1A7ba3OcKM4DMByeeAO/PpXH/CwBPjR47VRhfMk4H/AF1rC8WXmu/8NGPJommw6lqFpAotraeQIuPKyTksOm4nrRfm5H3V2FuVzXY6W8vPjZo1g+s3I0e7giXzZbGNAXVRyegGcD0Y13/gPxpZ+OvDceq2yeTKG8u4gJyY5B1Ge45yDXGt4m+MbqVbwHphBGCPtaf/AB2k+CXhLxH4V/t1dd077Cl1JHJCgmRwT82cbWOOo61UeqYnpZnrVFFFIZ4bonxi8Ua1cajounaLb3+ui6ZLYIpSGOFcgvIS3Y47jrUureLvi34LhGra7pml32lqw88Ww/1YPuDkfUgiq/wCt4j4j8YXBAMyzqgPcKXcn+Q/KvZdetYb3w9qVtcKGhltpEcHpgqaltxgpdbJ/gUkpTcel7EHhrxFY+KvD1rrNgx8i4XO1uqMOCp9wa8zvviR4s8X+JbvRfh5Y2xt7M7Z9RuuVznGRngDIOOCTjNY3wcvrmH4OeLPLZs23nvD7Ew54/EV0H7O9vFH8PridAPNmvn8w9zhVA/z71o4rna6JJ/eQm1Fd22vuKF/4w+J3w/aK+8WWdhqujs4SWazADR59wBj8Rg9M16/pWqWmtaTa6nYyiW1uYxJG3qD/Wsjx/bQ3fw+1+KcAx/YZW57EKSD+YFcl8AbiWb4YRJISVhu5UTP93g/zJqU78yfTUclaz76GB8Af+Qt4y/6+0/9Ckr0jxvqPirT9Nt/+ET0q3v72aXy289sLEuD8xGRkcev515v8Af+Qt4y/wCvtP8A0KSu18bfE6w8I6jb6Rb2NxqutXABjsrbrz03HBxn0AJpfZivJfkP7Un5s5PVLj416Jps2sT3OiXUMCGWW0hjBYKOT/CM4Ho2a734feMo/HPhSHV1hEEwcxTxA5CuOuPYgg/jXI3fib4o32l3THwLY2ts8L7vPvlLBcHPG4Hp7VU/Zy/5EbUf+wg3/oCVUdeZPov1JlpZr+tCG5+MOp6X4z8S6LLaLfTQTCDSrSCMh5ZCcYYjsBzXQeEG+Kdx4hhuPFC6fb6Q6Mz28ITehx8o4yevua5DwTZQXP7SHiieVAz2wmeLI+6xZVz+RP517vSh8EZPdoctZyS6MKKKbJIkMTyyuEjRSzMxwAB1JoA838Q3vxUvvEV3YeHbDS7HTYWAjvrptxlBAOe//oP41zk/j3x94A8Rada+OI7C90y+fYLq0XG3kAkEAdMg4I5HStY/F7Ute1C4tPA/hO51mOBtr3csoiiz7Z/qQfauB+MWpeNL/RtLHifQLLTIFu8wtBciVmbacg4J4xRHRr5DavdHufjrWrrw/wCB9V1ewMf2m2h8yMuu5c5A5H415vovxC8feO9It4/CmmWcUsMYF9qN2Nsfm91jX6YPQ/hXZ/E7/kkWtf8AXmv81qp8EreOD4U6UY1AMplkc+p8xh/IChLWSfS36k83uxfe/wChyF34/wDiH8PtXsV8bW1je6VdPsNxaqAV9cEY5A5wRzXtM99bW2nSahNKq2scRmaQ9AgGc/lXlf7RKg/D22JAyNQjwfT5HrS8fXEsHwEuHjJ3Np1uhI9G2A/oTUuXuSfVO33opR9+K7/5nNWPjr4jfETULuTwXbWWnaRbvsW4u1BLn3JB5xzgDj1rn/ij4g8YW3hCTw9400+386eVJbTULL/Vy7T8ysOxwc9B9O9ep/Bq2htvhVovlADzVeRyO7F2z/Ksb9oK3jl+GvmuoLw3kTIfTOQf0NOquXT0/MKb5tfU7fwR/wAiHoH/AGD4P/QBW9WD4I/5EPQP+wfB/wCgCt6tKnxv1M6fwL0MHxj4rsfBnhy41i+BdY8LHEpw0rnoo/z0Brzax1P4zeJrFda09dI02zmHmQWsyje6duoJ59yKp/tGzTmHw1ZxrvSW4kbYTgMw2gA/99GtiPxJ8Yookjj8B6YEVQqgXacAf9tazjqmzSWlka3w5+I114lv77w94gslsPENhnzY04WQA4JAJOCOO565FavxE8fWngHQlu5IftN7cMY7W3zje3ck9gP6ivPfDHhrx3dfGSDxbrnh6LTYJEZLgw3EbKP3ZUcByTkgU34pKNQ+N/gvTrkbrUeU209CTKc/+gim/e5Fs3oxX5eZ9FqaNjqvxsvbZNVXTNGWBx5i2Mo2OV64+9kHHqc0/Qfi7qev/EjSvDo01bGN4nTUIJ0JljnUOSFbPThe3evYK8LvLaK3/aps2iUAzQeY+P73ksP6CnF++l01/IUvgb6nU/FnxzrHg2bQV0o24F9O0c3nR7uBt6c8dTXpY6V4f+0J/wAfPhL/AK+3/mle4DoKUfhv5v8AQcviXp+rPM9Y8c6xY/GvSvCkJt/7MuoVeTdHl8kOeGz/ALIrvdbub+z0S8udMtFu76KJnht2bAkYds1474kIP7UGge1sn/oMlen+MvGeleB9G/tHVHchm2QwxjLyt6D/ABpf8u0/X8x/8vLLsjhAvxw1GI3ay6FpuRuFowBb6Zw3/oVaXwy+ImpeJdR1Lw/4is47XW9Ozv8ALGFcA7Txk4IOOnBzVa18efEbXI1utH+HyRWbjdG99eKhYdjg7T+lcr8NZtSn+PviCXV7WK01B7RzPBC+5EbMfQ96qK97lfZ/gTL4brujM+LNz40k8d6BFqC6fCv2stpUULFlzvUBpCe5+X9a9W8Jj4lf22P+EqOj/wBm+W2fsmd+/t+HWuK+NP8AyUbwJ/18D/0ale4UQ0pp+bHPWdvJHmnj74lX2ka9beFfCunpqPiC4AJD8pCCMjIyMnHPJAA61i3d18bdEtW1S4Gj6jDEN8lpEgLBR16BSfwJqj8OgL34/eMbq5G6eHzVj3dQPMVePwAr3Opj8Cl1eo38bj0WhyvgHxxZePPD41C2jMFxE3l3NuTkxv8AXuD2Ncb4o+K914T+Jt3pN4iS6XHZCSKGOP8AeyTFRtUH3PtWR8IALL4teN9OtuLQSOQo6ArKQP0JqPWLKC+/alsI7hA6JCkoUjjcsRI/UA0/icGtE/8AJifu86etv80dFoN58XNV12xvtRtLDTtFllDS2uEMqxfjk5x7g+1WrrxxrEPxxtfCKmD+y5IPMYGP58+Wzfez6ivS68Qv/wDk6ix/69B/6JamviivX8mJ/DJ+X6nqni2/1zTfD01z4e02PUNRDKI7eRsAgnBPbOOvUfWvOpo/jiLZ74XGhqVG77EigsfYfKR/49XY+OfiHpXgW3gF3HNdX1ycW9nAPnftk+gzx/Sudh8YfFHUk86z+H9tbQtyv2y+VWx7glT+lStb2KfS5q/C34gSeO9GuTe2yW2p2MgiuY0ztOejAHkdCMe1cZ8VP+S0eBf9+P8A9HVF8AmnbxH4za5jWKczoZI0OVVt8mQPYGpfip/yWjwL/vx/+jqr/l5Tfdr8iH8FRdrnt9FFFIo8w+IPxHuvBXjnQrOR4l0e4haW7Jj3PgEj5T+VZttrnxc8UXEWp6Vp1lpWjSuDFFcBDK8WfvHdk5x9KyfjFZw6h8W/BVpcKHhmKI6nuDLyK92ACgAAADgAUQ+FSfd/mE/i5V2RzHjbUfFWn6Zb/wDCJ6Vb6hezS+W/nthYhg/MRkccev51wOqXHxr0TTZtYnudEuoYEMstpDGCwUcn+EZwPRs11njb4nWHhHUbfSLexuNV1q4AMdlbdeem44OM+gBNYV34m+KN9pd0x8C2NrbPC+7z75SwXBzxuB6e1S27NopLVJnXfD7xlH458KQ6usIgmDmKeIHIVx1x7EEH8a5b4g/EvVNM8R2/hHwjYx3uuzgF2kGVizyBjI5xySeAKz/2cv8AkRtR/wCwg3/oCVm/DlRe/H7xjd3A3TQecsZPYeYF4/AYrSSTqKPS1/wuZxdoOXnb8TWOp/F/wxAdV1m30rWNPiG+5t7XCzIncrgDkD61lfs+XEd3qni+5h3eVLcRyJuGDgtIRmvcXVXRkYAqwwQe4rw/9n6FLfVvGEMfCR3KIv0DSAUov3n6fqhzXu/NHT3XjjWIfjja+EVMH9lyQeYwMfz58tm+9n1FO+L3jbV/BVjpE2kGANd3LRSedHv4AB45rmb/AP5Oosf+vQf+iWp/7Rf/ACC/Dn/X63/oIqV8MfX/ANuK+1JeX6HtUbFokY9SAadTIf8AUR/7o/lT6p7kx2RQ1u5v7PRLy50y0W7voomeG3ZsCRh2zXmIX44ajEbtZdC03I3C0YAt9M4b/wBCru/GXjPSvA+jf2jqjuQzbIYYxl5W9B/jXG2vjz4ja5Gt1o/w+SKzcbo3vrxULDscHaf0qVq3Yp7Is/DL4ial4l1HUvD/AIis47XW9Ozv8sYVwDtPGTgg46cHNR/EH4j3XgrxzoVnI8S6PcQtLdkx7nwCR8p/KuQ+Gs2pT/H3xBLq9rFaag9o5nghfciNmPoe9T/GKzh1D4t+CrS4UPDMUR1PcGXkU9W6fn/wSdEp+X/ANa21z4ueKLiLU9K06y0rRpXBiiuAhleLP3juyc4+ldH8RviI/g8WWmaXZjUNf1A7ba3OcDnG5gOTzwBx39K70AKAAAAOABXzr4svNd/4aMeTRNNh1LULSBRbW08gRceVknJYdNxPWlpdR6fiNXs5dfwOlvLz42aNYPrNyNHu4Il82WxjQF1UcnoBnA9GNd/4D8aWfjrw3HqtsnkyhvLuICcmOQdRnuOcg1xreJvjG6lW8B6YQRgj7Wn/AMdpPgl4S8R+Ff7dXXdO+wpdSRyQoJkcE/NnG1jjqOtVHqmJ6WZ61RRRSGeafCzxxrHi/UvEcGqGApp86xw+VHtOCXHPPP3RWX4t+K+p+FfidPof2MXtkbVfs9vEn72SdgNo3emfas/4B/8AIb8Z/wDX2v8A6FJUWqW8dx+1RYCRQwSBZAD6iFiP1oSu4Luv0Bu3O+3+aNS5k+OE0TX8SaLbrjeLBdrOB/dyc8/8Crf+FvxEm8b2V7balaJaavp7hLiNAQrA5GQDyOQQRXoNeI/CwBPjR47VRhfMk4H/AF1oi/e5fJ/gEvh5vNfidV8TfiTL4ONnpWkWi3uu3/EELAkICcAkDkkngD2NYkM3xtsYBqVzHo19Go3vp4wJMdwCAOf+BH8ayplF/wDtVIlyNy20AMQPYiHI/Uk17pSj8Kl1Y5fFy9EfP/wm1ePX/jZ4h1WOGSAXVo0hik+8jbo8qfociu18d+ONY8PfEPwvoliYPsepOqz+ZHubBkC8HPHFct8PbeO1/aF8XxQqFQRysAO2ZEJ/U1L8V/8AksngT/rrH/6OFVDX2S6P/gky09r5f8A9g1rWLPQNGu9V1CTy7W2jMjnv9B7k8D615BYeMfin49EmoeFtPsNM0gOVhkusFpMH1bOfwGK1/wBoS4lh+G6RxkhZr6NHx6AM38wK7rwXaw2XgjQ4IFAjWxhIx7oCT+ZNTHXmb6afqOTtZd9TH8Bz+PnmvofGlvYpHEF+zzW+Myk5z0OMDA7A81W8YX/xGbXV03wlpmnrZGIO2oXTZAJyCuM9Rj0Nd9XmGqfF159fuNC8H+HrnX723JWaRH8uJCDg84ORnjJwKbd2kCVk2c7rXi/4o/DtrXUPEw0vVNKllEchtVwVJ7ZCqQeuMgivRPE+p+IbvwjDqHg5LJ5LmITGW7YgJEV3ZUDq31ryr4p6v4/v/AdwniDwvY6dpxljLSx3ayOrbuBgMa9V8J/8ko0r/sEJ/wCiqUtacm+n+Q4/xIrv/meJ/CV/iJLoV+/hRtKNs12TOb3O8ybR09sYr2vVvFcvgzwDHrHijyn1COMLJFbnCyzHoq+39Aa4f9nD/kTtV/6//wD2RapftGzTmHw1ZxrvSW4kbYTgMw2gA/8AfRqqmlorrb8iYa3b6XLljqfxm8TWK61p66RptnMPMgtZlG907dQTz7kV0Xw5+I114lv77w94gslsPENhnzY04WQA4JAJOCOO565FZMfiT4xRRJHH4D0wIqhVAu04A/7a1keGPDXju6+MkHi3XPD0WmwSIyXBhuI2Ufuyo4DknJApq3Nbp/VhO/Lfqd98SfiBB4B0OO4EIudQuWMdrbk4DEdWOOcDj65FchYTfG+8tU1T/iTRo48xbCZArEdcdOPxbNZ3xRUX3xy8F2FyN1sPKbaehJlOf/QRXulRHWPN5v8AAqWkuXyX4nznoGvzeJP2iNLvbuwksL5IGgurZ/8AlnKkbggHuOh/GvoyvC7q3jg/aqtWjUAy2/mPj+95LD+gr3SqTvCPz/Nifxv5fkFFFFIYUUUUAFZ+u6guk6BqOoucC2tpJf8AvlSa0KRlV1KsoZT1BGQaUldNDTs7nj/7PGnNH4R1HVpR+9v70/Me4Uf4lq9hpqRpEu2NFRfRRgU6qbuSlY8P0L/ipP2l9WvT80OkwNGp7AhRH/Nmq78fdFv59O0XX7G3eddKnLTKoztU7SGPtlcH617HXNa14+8NeHtbTSNY1FLK4khEyGZTsZSSPvdAeD1xU7KKW6/PcrrJ9H+WxxafGeLxJZR2HhDSb26124QAJLGFitieru2eg/Wub+AGmSS+KPE+sXE/2mSNvs/2g/8ALRmcszfjtB/Gus8ZfFTwlofhq9j0K/s7vUrmNo4IrHDfOwxuYrwMZz61f+DPha48L+AohexmO9vpDdSow+ZQQAoPvgA/jVR3cvL8/wDgEy+FR8/yOO+MxuNE+IfhXxTcWks+k2ZUSGMZ2sr7iPQEgjGeuK19S+KEnjTTrnTPBFpebniY3Wp3EWyK0jx8xHPL46CvWpI0lQpIiujcFWGQabFBFbxiOGJI0HRUUAfkKi3u8r8/xKv73N6fgeP/ALOml/ZvB+oakw+a8u9qse6oMfzLVU08HxH+03e3JBaDSLcqp7AqoX/0J2r2/GOlFaN+8pdl+libe649/wDO4V4t8Y9J1XSfFmhePNMtHu49O2rcxoCSoViQTjsQSM9uK9poqNbprdFdGn1PJ/8AhoLwnJaI1vaapPeOBttUgG7d6Zzj8q9K0a+l1TRbK/mtJLSW4hWVreTO6MkZ2nIHI+lTxWNpBKZYrWGOQ9XSMAn8anqtCQrwnx3cy/Ez4p6f4KspGOlaa/m37oeCw+9+Q+Ue7GvdqYsUaMWWNFY9SBgmkviTfQfRpCQQRW1vHBCgSKNQiIo4UAYArxT4tH+zPi74H1boGkWNj7CUf0evb6Y8UchBdFYjpuGcUL4lLs7hb3XHurHmV58VL2P4vQ+C7XSEkt/MWKadmO/JXcWA6bRmvUKhFpbC6N0LeIXJXaZtg3kemeuKmoXwpdQe9zyH9oXUWh8F2Olxn95f3ijaO6qM/wAytemeHtNXR/Dmm6cowLa2ji/EKAf1rSooWia7u4PVp9jy/wAefFS88K+NtL8O2GkJdtciNpGdiCQ7bQEA78dTXqFQvaW0txHcSW8TzxjCSMgLL9D1FTULawPe4UUUUAFcd8VVZ/hfr6opZjbcADJPzCuxoqZLmTQ4uzTOA+CyPH8KdIV1ZWBlyGGD/rWq78WP+SW+IP8Ar2/9mFdlRVVPfv5ip+5Y4L4Mf8ko0X/dk/8ARjVg/tEf8k7t/wDsIR/+gvXrdFFT33cKfuHLtokXiT4aRaPM21LvTY493907Bg/gcGvKPBnj65+FUMnhLxppt3FDBIxtbqFNylScnHTK55BHrgivf6int4LqPy7iGOVP7sihh+Rptvmcl1ElaKi+h5tZ/HDw/rGs2Wl6LYalfT3MyRlvJ2JGpIBY8k4HXp+NenVDb2dtaKVtreGEHqI0C5/KpqNLB1CvGfil4e1rQ/GenfEPw/aNdvagJeW6AklRkZwOcFSQfTANezUVPVNboro0+p5RB+0J4Ne0WS4j1KCfHzQeQGIPpnOD+ldn4K8Xx+NdJm1ODTrqyt1mMcQuRhpFAB3YHGOcdT0rZbS9PebznsbZpSc7zCpb88VbqiTxC8/5Ops/+vQf+iWp/wC0V/yD/Df/AF+v/Ja9sopLRJdnf8bj6t91b8LHF/FD/klGu/8AXn/UVV+C3/JKNF+kv/oxq76ihaX87fqK2iXY+Zo9X1Lw78d/Eut2NhLfW9pLJ9thh5fyWIBYDvg4Nd3rP7QHhpNIl/sWO8utTkXbDC0BUK56bj7egzWd4C/5OH8Zf7kn/oaV7Iml6fHc/aUsbZZ8581YVDfnjNKKvSgn2Kb/AHkn5nm3wV8I6h4c8OX2ratC6alqj+cYnGHVBkjI7Ekk4+lR23x+8ORloNZ07VNMvIzh4nh3gH2OQfzAr1ioprW3uMefBFLjpvQNj86pu78hJaeZ4Hc3x+LPxU0DUvD2lXUOnaW6vc6hNHs3hWDYyPpgDOeTXX/GLwdqerxaZ4k0CMy6to8nmCJRlpEyG4HcgjOO+TXqKIsahUUKo6ADAFLS2SS6O/zDq2+unyPI7P8AaC8NLp4/tWy1G01KNcTWoh3fOOoBJH64rN8EaXq/j34mP8QNWsJLHTbZdlhDKMM/BC49QMkk9MnivZ5LK0lmE0lrC8o6O0YLD8anpp683UTWnL0PE/2i/wDkF+HP+v1v/QRXqXiLRE8SeEb7R5G2i7tjGGP8LY+U/gcVtUVNrxcX1/yKv7yl2Pn7wJ8RW+GVpL4R8Z6feW5tZGNvPHHuBUnJHuM5IIz1qp8U/Gtz8QPCUj6Dpl2mgafKs11e3KbBI5O1VQc5xuyf85+h57W3ulC3EEUqjkCRAwH509URECIqqgGAoGAKJe8veBe69DzXVtEvPEPwAt9O09S91Jpdu0aDq5UK238cVyXw/wDjD4f8K+D7TQNbtL60v7DdG0aQZ3/MTnqCDzyDXvNRNa27zCZ4ImlHRygJH41Td5SfclK0Uux86eLNR1rxR4/8H+I7nSptP0iS/jgsY5xiVgJFJdh2znj6fjXfftAf8kxf/r8h/rXqVFS1ePKu9/y/yKT97mfa35mF4K/5EbQf+wfB/wCgCt2iirk+aTZEVypI5nxv4v8A+EL0iHU30y5v4GnEcwt/vRqQTu6Y7Y5x161x0v7QPgt7NjHDqU0rLgW5thlj6ZzivV6gWytUl81baFZP74jAP51Fu5Z5R8DfDupafDrmuX1i+nw6pOHtrVhtKoCxzjsPmwPpWd4C/wCTh/GX+5J/6Gle30VSdpJ9lYlq6afV3Gyf6tvoa8V/Z2/48fEv/X6v8jXtlFJaNvurDeqsfO9vq/8Awqn4ya9f+IbG5aw1Qu0F3Gm7hn3gj19COvFbfi34hS/EPwxqWjeDdMvJ4jAz3l9cR+XHHGo3FR1yxxjHv+XtUsMU6bJo0kQ/wuoI/WljjSJAkaKiDoqjAFTy+4ovoO/vcy6nn/wRBX4UaSCCDum4P/XRq8e+HHie78G+JvEGsSafcXeiNcGC9a3Xc0B3MUfHp94fjX1HXh/wCAbVfGQIyDdLkH/ekq23Ko5Ls/0JtaFvNfqP8Y/G7SdV0CfSPCkN7e6pfoYE/cFdgYYJA6k4PAArrvhj4Hbw18OxpOpxgXN9vku4/wC7vGNv4KB+Oa7W30ywtJTLbWNtDIerxxKpP4gVapWVmu49bryPnvw3rl/8D9Zv9D8Q6fdT6Dczeba3sC5GemRng5AGRnII7110/wAfvDDlYdKstU1G7kOEhjg25PuSc/kDXqcsUc0ZjljWRD1VxkH8Kit7CztCTbWkEJPUxxhc/lQm9OYHboTI25FYjBIzj0p1FFAI4D4ueCrjxp4REdgAdSspPPt1Jxv4wy59x09wK5rQ/jrpenaZHYeLLHUbHWLVBHMvkZDkcZHIIJ9D+deyVDPZ2tyytPbQylehkQNj86Sur+YPW3keF2aal8ZPiPp2uHTp7PwxpJDRNOMGYg7sDsSSBnGQAOtekfFj/klviD/r2/8AZhXYgBQAAAB0ApaJK8ORf1cadpcz/qxwfwZ/5JRon+7J/wCjGrvKKKuT5m2RFWVgr5/8QajJ8Nvjvc+JNTs7iTSNSi2iaJc4yqg47ZBXp6GvoCmSwxzxmOWNJEPVXUEH8KjVSUkXummcXZeOdH8ceEfEE+j/AGgxW1tIjtNHsyTGx45rmf2dv+SfXX/YQf8A9ASvWooo4UCRRpGg6KowKfVLRtrqkiXqkuzOE+Mv/JKNc/3I/wD0YtP+GVtFe/CHRrWZd0U1m0bj1BLA13FFSlo0+pV9n2/4B89+G9cv/gfrN/ofiHT7qfQbmbzbW9gXIz0yM8HIAyM5BHeuun+P3hhysOlWWqajdyHCQxwbcn3JOfyBr1OWKOaMxyxrIh6q4yD+FRW9hZ2hJtrSCEnqY4wufyppvTmE7dCZG3IrEYJGcelOoooBHn3xt/5JRq/1i/8ARi1574M+OugeG/B+l6Pc6Zqcs9pCI3eJY9pOT0ywNfQdFJaX8xvW3kea+EvjVofjDxFb6LZadqMM84Yq8yptG1STnDE9q4vxlPceAfjnF4w1GwnudHuYwomjXdsPl7CB2yMZxxkGvfqa6JIhR1VlPBVhkGn1TXQXRp9TybUPixD4wsptC8EadfXupXkZiM8sXlxWysMF2PPQZ/zxTP2eYJLbwbqkMylZI9SdWB9QiCvWooIrdNkMSRr6IoA/SpKa0v5ietvI8Q8Bf8nD+Mv9yT/0NK9voopLSMY9lYb+Jy7nhXxU+1+EvixoPjd7OW40yONY5WjGdpG4EZ6A4bIz1xXo3hD4k6B43vbi10c3TPBEJZDNFsABOMdetda6LIhR1DKRggjINNht4bddsEMcS+iKFH6UR0XK/P8AEJau/p+B4p8Af+Qt4y/6+0/9Ckr1Txl/yJGu/wDYPn/9ANbdFTJc0OXyt+A4u0+bzueW/s//APJMk/6/Jf6U7TfipfX3xeuPBraQiWsckkSzhj5gKqTuI6YOP1FeoVCtpbLdNdLbxC4YbWlCDeR6E9cVo3eV3sSlaLRNRRRUjCiiigDw/UYZD+1Lp8ojfyxbj5tpx/qW717hRRQtIpf1uD1lf0PELz/k6mz/AOvQf+iWr2+iihaRS/rcH8VzxH4Xf8lr8d/9dJP/AEbVj4peHta0Pxnp3xD8P2jXb2oCXlugJJUZGcDnBUkH0wDXs1FJKyilvEb1cm+p5RB+0J4Ne0WS4j1KCfHzQeQGIPpnOD+ldn4K8Xx+NdJm1ODTrqyt1mMcQuRhpFAB3YHGOcdT0rZbS9PebznsbZpSc7zCpb88VbqiQooopDPlz4ceJ7vwb4m8QaxJp9xd6I1wYL1rddzQHcxR8en3h+Ndt4x+N2k6roE+keFIb291S/QwJ+4K7AwwSB1JweABTPgEA2q+MgRkG6XIP+9JXs1vplhaSmW2sbaGQ9XjiVSfxApWvCKe1l+Q72nJre7OM+F/gl/DHw9XS9SjH2m93y3cf93eMbfwUAfXNeeeHdXvfgfrWo6Nr1hdT+HrqbzbW+gTcAen05GMjOQR3r6ApskaSoUkRXQ9VYZBqm3zcy9CUly8rPDPGXxUXx3pMnhbwTp1/eXd+BHNM0W0JGevfv0JOABXqPgPwuPB/g2w0YsHmiUtM69GkY5bHtk4/Ct+C2gtVK28EcSnkiNAo/SpaSsk7dRvVq/Q8Q+AP/IW8Zf9faf+hSVQ8ZT3HgH45xeMNRsJ7nR7mMKJo13bD5ewgdsjGccZBr36muiSIUdVZTwVYZBpbcrXRW/Cwb81+p5NqHxYh8YWU2heCNOvr3UryMxGeWLy4rZWGC7HnoM/54pn7PMElt4N1SGZSskepOrA+oRBXrUUEVumyGJI19EUAfpUlUtL+YnrbyPEPAX/ACcP4y/3JP8A0NK9voopLSMY9lYb+Jy7hWZ4j0+XVvDOqadA22a5tZIUOcYZlIFadFKS5k0NOzufO3wz+I2mfDnR7vw14osL2yvIblpMrDndkAYI6544PQiqXxX8Q6p470Sz1iy0m5tfDlnchI5bldslxI4PzBf7oAxnPf8AL6RltbedlaaCKRl6F0BI/Opaq92m+lvwEtL2OI+J3/JIta/681/mtQ/Bj/klGi/7sn/oxq72ii+rff8A4IraJdjyT9oj/kndv/2EI/8A0F67KXRE8SfDGPR5G2i70yOMMf4W2DafwOK6mipt7sovr/lYq/vJ9v8AO58/eBPiK3wytJfCPjPT7y3NrIxt5449wKk5I9xnJBGetVPin41ufiB4SkfQdMu00DT5Vmur25TYJHJ2qqDnON2T/nP0PPa290oW4gilUcgSIGA/OnqiIgRFVUAwFAwBRL3l7wL3XoYfgj/kQ9A/7B8H/oAreooq5Pmk2RFcqSPPfjB4JufGXhNP7OG7UrCTz7dM48zjDKD6ngj3Fc3oHx40uy02Ow8WWV/Y6vbKI5gIMhyOM4yCCfQivZqr3FhZ3bBrm0gmI6GSMNj8xUK6v5lPW3kcb4P+KGm+N9cmsNI06/FtDCZGvJ0CoWBA2gDPPOeSOnSub+NnhnVJn0jxdokLTXmjvukjRcsUDBg2B1wQc+xr1uOKOGMRxRqiDoqjAH4U+m+jW6BdU9meUWP7QPhGfTo5bpL+G9K4e1WDed3opzg8+uK4fQL/AFPVv2i9O1TVLJ7KS8jaWG2k+/HF5TBA3oSBn8a+hF0vT1uftK2NsLjOfNEK7s/XGa8b1L/k6fTf+vQf+inpxtzp+v5MUvgkv63Nb48+G9R1fw7p+p6ZA9xNpc5keONdzbCBlgO+CoqPT/2g/C8mmRNeW2ox6htAe2jgDZf0U59fXFeu1ALK0E/ni1hE3XzPLG78+tStLroN62Z866fc61qf7QGg61rGnvYf2iDLa28n3khCOqhvQ8Z/Gut+P2h6jeafous2Vq91BpszNcRIN2FO0hiPT5cH617JgZzRT6JLow+02+qseTwfH3w1dWcSWOnapc6lIoCWMUAJL+mc9PcflXOfDa21qH466zPr1usF/dWDXLxqchA7RkLn2HH4V7tHa28MjSRQRI7dWVACalpp2lzev4iavHl9PwPF/jxp1/BdeHPFFpavcQaXOTOqDO0blYE+g+UjP0rrPCfxb8N+MdVg0vTVvReSxmQpLCAqYGSCc/yrvCARgjIqKG1t7ckwQRRbuuxAufypR0VnsOWrv1PFvGGm6t8O/ia3jzTNPlvtIvF26hFCMtHnG4+wOAwPTOQa0L/9oHw62nsNFstRvNTkXbDbtBt+c9NxBP6Zr16oIrK1hlMsVtDHIerrGAT+NJLTl6Db15up5r8GvBmpaDY6hrmuo0eq6vJ5jxt96NMk/N6Ekk47cVg3n/J1Nn/16D/0S1e30VV/eT7f5WJto0+oV4hf/wDJ1Fj/ANeg/wDRLV7fRSWkk+3+Q3rFrueG/GO1vtE+IPh3xp9hlvNMsgizBBnYVctz6ZB4J7it1/jjpGqxCz8L6XqWp6vMNsNv5G1VY93OeAO9eqEAgggEHqDUcNtBb58iGOLPXYgXP5UkrLle3+Y27vm6nivwKsL/AEzxR4ztNTA+2xzRiYr0L7pCSD6UfFT/AJLR4F/34/8A0dXt9FVfWL/lJaupLuFFFFIZ4h8VP+S0eBf9+P8A9HV7fRRQtI8vm394PWXN6fgeA+Mp7jwD8c4vGGo2E9zo9zGFE0a7th8vYQO2RjOOMg10eofFiHxhZTaF4I06+vdSvIzEZ5YvLitlYYLseegz/nivWXRJEKOqsp4KsMg02KCK3TZDEka+iKAP0pW93lew2/e5lueS/s8wSW3g3VIZlKyR6k6sD6hEFYvi2DU/hh8VpPGttYS3eiaipF2Ih9wnG4H0OQGBPB6V7xSEBgQQCDwQe9U23JSW6/ysJJWcej/zPKZ/jhpOrW5svC2m6lqOs3C7YIPI2qjHu5z0FYn7P1pdWGq+L7S9x9qhuI45sHPzgyA/rXtkFpbWu77PbxRbuvloFz+VTYFCsm33E9VY8Qv/APk6ix/69B/6Jan/ALRf/IL8Of8AX63/AKCK9sopLRJdnf8AG4+rfdW/CwyH/UR/7o/lT6KKGJKyseN/H7Q9RvNP0XWbK1e6g02ZmuIkG7CnaQxHp8uD9auQfH3w1dWcSWOnapc6lIoCWMUAJL+mc9PcflXrFRR2tvDI0kUESO3VlQAmktFboN62Z4T8NrbWofjrrM+vW6wX91YNcvGpyEDtGQufYcfhVz4qf8lo8C/78f8A6Or2+iqWjh/d/wCD/mJq6l/e/wCAFeM/FLw9rWh+M9O+Ifh+0a7e1AS8t0BJKjIzgc4Kkg+mAa9moqeqa3RXRp9TyiD9oTwa9oslxHqUE+Pmg8gMQfTOcH9K7PwV4vj8a6TNqcGnXVlbrMY4hcjDSKADuwOMc46npWy2l6e83nPY2zSk53mFS354q3VEhRRRSGeIfAP/AJDfjP8A6+1/9CkovP8Ak6mz/wCvQf8Aolq9vooWjj5f5WE1fm8wrxH4Xf8AJa/Hf/XST/0bXt1FC0lzeTX3jeseX0/A8U+Kmjav4b8daZ8RNGtHu47cBLyJASQBkZOOxU4z2wK1E+P3hm6tUWw0/VbrUpBiOySAFmf0yDjHuM/SvV6gis7WCVpYraGORurIgBP40louXoD1d+p4N8J4dWh+NfiBtchEOozWjTzRg52F2RgPwBA/CtH4r/8AJZPAn/XWP/0cK9vwM570VS0cP7v/AARNXUv7xyfxI8KP4y8E3ulQlRdcS25Y4HmLyAfryPxrzfwZ8YbXwnosPhvxlYX9lqGnL5KuId29BwMjOQQOM8g17pVe5sbS9x9qtYJ9vTzYw2PzqVdXt1G9bX6HJ+DviNpnj661C30m1vI4LWNc3E6BQxbIwoBPT3ryPwF4og+EWv67o3iuxu4TcTB47mOLdvC5wfdSDkEZr6Nhhit4xHDEkcY6KigAfgKSa3huFCzwxygcgOobH509nddrBurM8B+JXjK8+Ing27Hh3SrtdCsSs93e3KbPNIOAiDnOCcn6fn614KhM/wAM9EgJ2mTTIk+mYwK6dVVFCqAFHAAHApaLLlce4Xd1LsfOHw38bWvwpn1jw34qtLu3k+0ebHIkW7PG3p6EAEEV3nxD0P8A4Wn8OLLVtBST7TEftVmkoCtIvIK9eCcZH0FenTWtvcFTPBFKV+6XQNj6ZqUAAAAYAod5LXfT8AWjutv8zxnQPjxpdlpsdh4ssr+x1e2URzAQZDkcZxkEE+hFdZ4P+KGm+N9cmsNI06/FtDCZGvJ0CoWBA2gDPPOeSOnSuyuLCzu2DXNpBMR0MkYbH5ipY4o4YxHFGqIOiqMAfhTvd3YrWVkeT/Grwrqt2dJ8V6FC81/o77niQZYoCGBA74I5HoaSx/aD8MTaehurPUo9Rxte0jhDkv6Kc+vrivXKgFnai4+0C2hE3/PTYN359alaK3Qb116nz3oM2s337Q+l6trVg9jJqELzwWzn5o4fLdVDehwuT9a9K+KvxDvPh/p2nz2enxXb3crITMSFQAA9u5z+hr0HAzmobm0tryMR3VvFOgO4LKgYZ9cGm/hUV0/zBfE5PqVtD1FtX0Gw1JoGga6t0mMTdU3KDj9av0AADA4FFNtN6CV0tQooopDCiiigAooooAKx9b8KaB4kC/2zpNpeMgwryxjco9A3UD8a2KKAOX0r4c+D9Eu1u9P8P2cVwhykjKXKn1G4nB+ldRRRQAUUUUAFFFV76+ttNsZr28mWG2hUvJI3QCgCxRXIXXjLVIbNtQh8HavNp6jdvDxLKU/vCItu/A4PtWr4Z8VaR4v0oaho9z5sQO10YbXjb+6y9jQBtUVj3+vrb3506ysrjUL5VDyRQbVWJT0LuxAXODgck+lZEvj+10vXLXSPENhcaRPeHFrNIyyQSnptDqeDyOoHWhag9Dr6KKKACivPde+Mfhzwz4pu9C1aO8hltwh85Iw6NuUN2OR19Ku+HfiZpPi7VUs9AstQu4xkz3bQ+XDCMdyxySewAoWuwPTc7Wis/VtbsNEhjkvpmUytsijiiaWSRsZwqICzH6Cl0rWbDWrZp7CYyKjbJFdGjeNv7rIwDKeehAoAv0UVw/xIh8czWumjwTIiSCfN1lowdvGPv9uuQOaAO4opkXmeSnm4Mm0b9vTPfFPoBBRRRQAUVzvinxjY+FJNKju4pZZNSu1tYUjxkE/xHPYZH510VHmAUV4zd6jfD9pu0sReXAszagm3EreWT5LHO3OK9moWsUwe9gooooAKKKKACiiigAooooAKKKKACiiigAooooAx7Lwromna7d63aWCRaldgiecMxL5IJyCcdQO1bFeM3eo3w/abtLEXlwLM2oJtxK3lk+SxztzivZqF8Kf9bg/iaCiiigAoorxv9oC/vLGw8Omzu57cveMGMMhTcMDg460dUu4z2SimRcwp/uin0Ep3VwooooGFFFc74p8Y2PhSTSo7uKWWTUrtbWFI8ZBP8Rz2GR+dHkB0VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPonhXRPDct3JpFglq92wecqzHeRnk5J9TWxXO6N4xsdc8Ua1oVrFL5uklFmlONjFuw78YIoW+gPbU6KiuR+KFxNa/DTXZ7eaSGZLfKyRsVZTuHQjpVX4Q3NxefDDR57qeWeZ1k3SSuWY/vG6k80LW/lb8QelvM7iiiigAooooAKKKZMxSCR16qpI/Kk3ZXBK+g+ivnvwr4x+LfjSK7n0W601oraXy382JEOTyO1dHFH8cvNTzJ9H8vcN2BHnHftVJA9D2GikXO0Z645paQBRRRQAUUVg+MPFll4M8PyavfRySxq6xrHFjc7McYGfxP4UAlc3qKjglE9vHMAQJFDAHtkZrx271G+H7TdpYi8uBZm1BNuJW8snyWOducUfaURX91yPZqKKKBhRXm+t+MtdsfjNo3ha3+z/2ZeQCWTdFl+j5w2f9mvSKFqrg9HYKKKKACiiigAooooAKKKKACiuE8Xw+PZPGWgv4bljXRFYfbwxQfxfNuDfMRt6be9d3QtVcHvYKKKKACiiigAooooAKK8k+MvifWbW90PwroN09nd6vLtkuIztZVLBQARyOSckc8Vp+F/hVP4b1y01NvF2sXnlZM1vLIfLmJBHI3dM84OelEddegS006npFFFFABRRRQAUUUUAFFc7qvjGx0nxbo/hySKWS81MOyFMbYwo6t9cH8q6KjpcOtgooooAx9E8K6J4blu5NIsEtXu2DzlWY7yM8nJPqa2KiurmKztJrmZtsUKNI7egAyax/CHii28Y+HYdas4JYYJmdVSXG75SR2+lC107A+/c3aK5T4hxeK5vCrp4OcLqnmr3QMU77S/Gen61t6EupLoNgusMjakIEFyUxgyY+bpx19KFrcHpY0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiuS+J081t8Ndemt5XilS2JV42KspyOhHSqfweuZ7z4X6RPczyTzMJN0krlmP7xupNC1v5W/EHpbzO5oorndV8Y2Ok+LdH8OSRSyXmph2QpjbGFHVvrg/lR1sHS50VFFeM+B9Rvp/j54ttJry4ktokk8uF5WKJ86dFJwKFrLl8m/uB6Rv6fiezUUUUAFFFFABWPJ4V0SXxJH4iewQ6tGuxLnc2QMEYxnHQntWxRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcj8ULia1+Gmuz280kMyW+VkjYqyncOhHSlJ8qbHFXdjrqK4f4Q3NxefDDR57qeWeZ1k3SSuWY/vG6k813FVJcrsTF3VwooopDCiivJPjL4n1m1vdD8K6DdPZ3ery7ZLiM7WVSwUAEcjknJHPFLqkt2Pu30PW6K838L/Cqfw3rlpqbeLtYvPKyZreWQ+XMSCORu6Z5wc9K9IqmSFFc6vjGxfx43hJIpWvEtPtTyjGxRn7vrnkH8a6Kl0uPrYKK8Z+Bmo31/qni1by8uLhYrpRGJpWcINz8DJ4r2ajon3Dq12CiiigAooooAKKKKACiiigAooooAKK8Zu9Rvh+03aWIvLgWZtQTbiVvLJ8ljnbnFdd8SIfHM1rpo8EyIkgnzdZaMHbxj7/brkDmhapPv/nYOrX9bXO4opkXmeSnm4Mm0b9vTPfFPoBBRRRQAUVzvhPxhY+L01KSwilSOxu2tSz4xIV/iXHaq3xDi8VzeFXTwc4XVPNXugYp32l+M9P1pN2V/wCtRpXdjq6Kz9CXUl0GwXWGRtSECC5KYwZMfN046+laFU1Z2JTurhRRRSGFFFFABRRXmnx1vbqw+HDz2dzNby/a4h5kMhRsc8ZFKTsrjSuel0VieDpJJvBeiSyuzyPYwszscliUGSTW3VSXK2iYvmSYUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFUtY1OLRtFvdTn/wBVaQPMw9Qozik3ZXY0ruyK+r+I9L0SSCG8uD9quDiC1hQyTSn/AGUUEn69BUFt4r0+bVIdMuEubC+nUtBDeQmPzgOuw8qSPTOfauI+Dttca3a6h441f97qeqTMkTNz5UCnARfQZz+Qp3x0drPwlpmqwnbdWOpwyROOqnn/AOtTtZpPrb8RLW9vP8D08yIJFjLqHYEhc8kDqcfiPzp1c3oUn9t6zda91tkj+x2Z7MAcyOPYthf+Ae9dJQJO4UVha94O0PxNPFNqttNM8SlUMd3NFgZz0RgD+NZH/CqPB3/QOu//AAZ3X/xygZ2lFcX/AMKo8Hf9A67/APBndf8AxytDR/AXhzQNRW/02zuIrlQVDPfTyDB4Pyu5H6UAdJXF/E/RvEOt+FY4PDTRi/iu4p9rsoDBST/Fxwdp59K7Sik1cadijoy6gui2S6s0b6iIEFy0f3TJj5sfjXjfwmJT4weNotP/AOQXvckL9wP5vy4/8fr0Xxjr19Go8P8Ah1BNr96h2n+C0jPBmkPYDsO5qx4I8F2HgnQxY2pMtxIfMurlvvTSdyfb0FUneTn6r7/8iWvdUPT8P8yhB8PIrf4mz+NF1S53zRbGs9uFztC8tnkcZxjr3ri/jTbS+K/EHhvwppK+dqIla4m2c+RGcDcx7Dqfwr1m5TTdYSfTpZY59mPOhjmwy+mdpyK8r8fpJ8J2s/EnhceVaXFyIdQsZGLxzZBIYFslT8pHB9KlWTjfZf0vxK1d7b/1+h7BEnlxImS21QMnvT6p6TqUGs6PZ6nbZ8i6hWZM9QGGcVcqndPUmNrKx50YvC7eK/E7eIrTTrhjeQrCt1brM7f6OhIRSCT+ArrdB1PQbqOSz0SS1QW/37WKPymiz6xkAr+VVtBk8Mahq+q6nos9pdX0kix3s0L72BUYC+wwO3Brz/4x3z+F/E/hPxPYny7pZ2t5ivHmxfKSreo5P50l9ld7Ib1u+x32uWt/a+ILHXbKxbUVggktpbaN1WQK5Vt6byFJ+XBBIyDS+H7O+fV9U1q+szYG9EUcdozqzqsYb5nKkruO7oCcADmuhVgyhh0IzS0LTQN9Qryn43+JtZ8N6focmj6hLZvPdMkpjx8y4HHIr1avE/2i/wDkF+HP+v1v/QRS6r1X5jXX0f5HpHjTxK3hPwRfa4sQmlgiXy0boXYhRn2ya810Hw38R/GuiW3iCfx/JpwvF82K3tojtVT0B2lQP1r1zVdGsvEHh+bStQjMlrcwhJFBwfYg9iDg15Cvgn4j/Dje3g/VU1jSVJYafcj5gOvCn/2Ugn0o0UncSu4qx3vgXRvGejy3sPijXodVtsL9kZUw/fcWOAfTjJrs64H4dfEyHxs91p93Yvp2tWYzPbNnBGcEjPIweoPT3rvqp3Ej5r+LOl+Jo/iBoC3/AIgSdru5P2Dy4Ni2Y8xQOP4jyOe+K9Z8J+FvGmka2LrXfGP9q2Xlsv2byNnzHoc+1cV8af8Ako3gT/r4H/o1K9wohpTT82Oes7eSPnXxzql/o/7QyXOlWgu9Ra2jhtomPymR4yoJ9hnP4V1dx4E+KdzE163xAWO+I3C2ijKxA/3cjjH/AAGszUI1k/apsdwzttgw+ohavcqmK9xfP82Dfvv5fkeY/CPx3q3iUapoviFV/tfSnCySKoXzBkqcgcZBHbrkVU8ceNfEOo+NIfAvgt44b8rvvL1wD5IxnA4OMAjJxnkAVlfC3j41eO/+ukn/AKNrltFt/F978Z/Fx8L31haaiss3mNfLkGLzAML8rf7NCfPyN9VcGuXmt0djqdc0H4m+B9Lk8Q23jR9ZS1HmXNpcRHBTvgEnIHtg16d4J8VQeMvCtnrUCeWZQVlizny5Bww/w9iK4C98O/GjULG4s7nX/DjwTxtFIuwjKsMEf6r0NdJ8KPBuqeB/C0+l6rPayzPdNMptnZlClVH8SjnINVHqn8hPpb5nd1xnjjTfG+qXFlbeFdXtdNtGVvtc0iZkU8Y28Hrz0x0612deV6/8TdbvPGM/hLwPpEF9f22Rc3V0xEURHXgEdM4yT14wal6tIpaK5geJ/D/xI8D6LL4itvHc+qLa4ee3miwNucEgMWBH5V6p4J8R/wDCWeD9N1oxiOS5j/eIvRXBKtj2yDXmXjOx+KY8EavPrWr6ALAWzGeC2iYuV7gEr1/Gup+CH/JJ9J/3pv8A0Y1VHVSv5fqTLSz9Th38e+NG+KPiHwvo0i3U805isvtGPLs1U5ZzxyAPXP49K1NT8D/FOxsZtTtvH8l3eRKZDahCiNjkhc5X8Coqp4DjVv2i/F7kAsiS7T6ZdK9wk/1bfQ1G1KMutim/3kl0ucJ8JvHFx448KvcX6IuoWkvkXBQYD8ZDY7ZHb1Fchrni7xZ488eXXhTwXerp1jYEi6vwOSQcE56gZ4AHJx1xSfs85Gm+J8drxcfk1Rfs7hWl8VSSY+1G5j3k9cfP/XNW7Sn5Wv8AkT8MX62/Mu3tn8R/hzYya1J4iHiTTYRm7tp0KyKndlJyePr+FbnwT8Q6r4l8G3N7q95Jd3AvXRXfGQu1SBx9TXbeJEjk8L6skoBjazmDZ9NhrzX9nb/kn11/2EH/APQEog7uSfZfmElZRa7/AKGbef8AJ1Nn/wBeg/8ARLV2XxR8fS+C9KtoNNhW41nUX8q0jYZC9AWI78kAD1Ncbef8nU2f/XoP/RLVm/GNdTn+MPhaDTZoIboxR/ZJLgZjWUyNgng9wOxqFrGEe7f5sp6SlLsl+SN1fAfxUnsv7Rk8fvFqRXf9jCHyg3XaSPl9vu4re+FXj698VwX+la5EsWuaW+yfaNokGSN2OxBGDjjpWb/ZPxu/6GHw5/37P/xmj4dfDzxT4d8c6n4i8QXmmztfwuJPsjtkyMytnBRQBwauO9uhMtvM9YrxH9o2QRaX4dkYZCXjsQO+FFe3V4j+0dtOl+Hd33ftb5+m0VD3Vu6/MuPX0f5F6Dw78SvGdnFrE3i3/hH4bhBJbWFrGSY0PK72BBzjHr/SovCfjLxR4X8fp4I8a3KXv2kA2V8By2c7ecDIOCOeQa9gtgotYQmNgRduPTFeIfGj5fiZ4HeD/j585enXHmrj+taLSoorZu39eZnvTcuqVzt/ij4+l8F6VbQabCtxrOov5VpGwyF6AsR35IAHqa5hfAfxUnsv7Rk8fvFqRXf9jCHyg3XaSPl9vu4rC+Ma6nP8YfC0GmzQQ3Rij+ySXAzGspkbBPB7gdjXU/2T8bv+hh8Of9+z/wDGaiOsebrd/gXLSVvJfiaXwq8fXviuC/0rXIli1zS32T7RtEgyRux2IIwccdK8x+LOl+Jo/iBoC3/iBJ2u7k/YPLg2LZjzFA4/iPI574rvPh18PPFPh3xzqfiLxBeabO1/C4k+yO2TIzK2cFFAHBrH+NP/ACUbwJ/18D/0alUledO+73J2jO2y2OksfCPj/T4r+W98cPfZs5VgjSAIVlx8jZ9iP1p3wV8WX/ijwjcjVrl7jUbO6aOR3ADFSAVzj8R+FelV4f4EkTwd8avFuhTHy7S6ja7iz0AHzj/x1m/Kkn7zT7flqNr3brv+ehW+LvjzxJYeL307w1fy28WmWa3F6IwDksw65B6Bl/M17NoWsQ614bsNXRgI7m3WYn0yMn8jmvHPhvon/CdR+OvEF6vGsNJZwFv4Vxn9Pk/Kqvg/xfLpPwK8SWVw5S+0hpLRATyPMOF/Ji35UruMGnva/wB/T8UO3NNW2vb/AIP4M6j4SeJNc8XeIfEuqXl/LLpMU/lWduQNqZYnjjsoH51T1rxZ4q8c+OLvwp4LvU02y0/IvdRK5JYHBAPbngAcnB5xXQ/BjRTovwvsWK4nvd12/r833f8Ax0LXkXwrtPHd7ca/L4T1LS7ST7Qv2sXq5ZjlsY+RuPvVTSU+TsvxJTvFy7s6zX0+Ivwtgi12TxMfEOlLIqXUNyhBUE+5JA7ZB644r1u18T6dc+EU8TeZs09rX7UWPVVAyR9R0+teYa34P+MHiLR7jStS13w7LaXACyIFZScEHqIsjkCp/EOg6l4S/ZyvNGu5YpLu3i2yNAxZNrTA8EgHofSpk2oP8CopOa/EztHufiD8WHudWsdePhvQllMdskKZd8d+CCfc5xnoKms/FHi74beNdP0HxdqS6vpGpELBfFcOhJAyT14JGQc8HINZvw/0z4py+B9Nk8O61oUGlMjGGOZCXX5jnd+7POc96n8S/DX4o+L2sv7b1jQJhZyF4vLLoQTjPSIegq7csklt1IvzRbZ6f8RtSvNI+HutX9hO0F1BBujlXqp3DmvMvCuqfEb4l+Hrb7BrCaNY2qCGe/ZN011KOpGOgGR0x+Pb0H4qAr8KdeVjki1AP/fS1U+Csax/CjR9oA3eax9z5jVMVdyv5fqU3pHzv+hwOu6j8QfhLqFhf6n4gOvaLcS+XKJV5B6kc5KnGSCDjjmvebedLm2iniOY5UDqfUEZFeUftEf8k7tv+whH/wCgvXpHh3/kWNK/684f/QBRF3i79H+gSVpK3VfqN8RWmr32izW+h6jHp98+AlzJF5gQZ549cV86fDnw/wCLNW8U+J4dI8VNp93bz4u7gxbzcHewz7cgn8a+oK8P+CX/ACPvjr/r6P8A6Nkoivf+T/Qcn7nzR0fi7TdX0n4Ia7a65q39qXwhYtc7Nu4FxgY9q4j4dReOvFfgqy03QNTi0HR7HdE92U3y3EhYsdvoBuA6j8e3qXxY/wCSW+IP+vb/ANmFUvgrGsfwo0faMbvNY+58xqI6uTfl+opaKNu7/Q4LXdT+IPwl1CwvtU1/+3tFuJfLlEq8g9SOeVOMkEHHHNe3XWrWdnokurzybbOOA3DP/sbc/wAq8y/aI/5J3bf9hCP/ANBer/xAeVPgHOYs5On2wOP7pKZ/Spcn7OT7P80NRXPFd/8AM5nR7n4g/Fh7nVrHXj4b0JZTHbJCmXfHfggn3OcZ6CprPxR4u+G3jXT9B8Xakur6RqRCwXxXDoSQMk9eCRkHPByDWb8P9M+KcvgfTZPDutaFBpTIxhjmQl1+Y53fuzznPep/Evw1+KPi9rL+29Y0CYWcheLyy6EE4z0iHoK0tyySW3Ui/NFtnu9RXP8Ax6zf7jfyp8YKxqrHJAANMuf+PWb/AHG/lWdT4WXDdHgPwI8T6FoGl65Fq+r2di8t2rItxMELAKeRmvYLfx/4QuriO3t/EmmSzSsEREuVJZicAAZ614n8FPAvhvxbp2sz65pi3ckF0qRsZZE2ggkj5WFes2fwi8C2F7BeW2gpHcQSLJG/2mY7WByDgvjrWj3V/L8iX1t3f5nT62NTbRLwaM8S6l5TfZjMMpv7ZrzEfD/4m38Rub/4jPbXZG7yLaI+WD6ZBX/0Gut+Ifj+08A6NFcyW7XV5cuY7a2U43sOpJ7AcfmK5q0k+MutxLdg+HtGikG5YZVd5FB6Z4bn8RULW7RT0SRH8K/GfiC78R6x4O8UyrcajpoLJcAAFwGAIOAM9QQevPNQfFLx5qPgzx/4eMdzP/ZjQNJc2kYH745IA/lWD8NY9Th+PviCPWbiC41FbRxPLAu1GbMfQce1W/i3DHcfGLwPDKoaN3jDKehHnVW7p+f/AASXoqnl/wAA0bXw58VPE88Os33iVNEhkdZE02AsNkec7WwOuPUk1zv7QNh4giitby71pJdIlugltYJFt8o7CdzN/Eev519CV4v+0f8A8ipo3/X/AP8AsjVMraW7r80XDd37fobnhfwj47stR0691DxwbzTkCtJafZwu9dvC5/L8q4Hxzql/o/7QyXOlWgu9Ra2jhtomPymR4yoJ9hnP4V9A6f8A8g21/wCuKfyFeLahGsn7VNjuGdtsGH1ELVT/AIiXm/yZnH+G35L80adx4E+KdzE163xAWO+I3C2ijKxA/wB3I4x/wGtH4R+O9W8SjVNF8Qqv9r6U4WSRVC+YMlTkDjII7dcivTq8R+FvHxq8d/8AXST/ANG0ov3+XpZ/gVJe7zdbr8TvNT8HXN98UtG8VJLALWxtJIZI2J8wsd2CBjGPm9a5Dxb4n8U+IfiWfAvhjUYtJSCESXF2y5dvlDHH0BHTHfmvYa838efCw+I9Zj8RaFqsmk6/EoAmXO2THAzjkHHGRnjtS2sumo+76mS/gD4n6ayz6b8RGvJAQTHeRkKfXrvH8q9bhWRII1lffIFAZ8Y3HHJxXia/Ebx18PruC18e6Sl5pzsEXUrXGT75Hyk+xCmvabS7gv7OC7tpBJBPGskbjoykZBqumhPXUmrzXxD4a+I+veIrtbTxXBo+iKw+z/Z4sysMDOcYPByPvfhXol3dQ2VnNd3DhIIY2kkc/wAKgZJ/KvI9P+IPjvx/cXL+CtI0+z0qGTy/tuosSWP0H54AOPWp3ZWyMbWNU8c/CXXtLm1XxE+vaJeS+XJ56YYdM9SSpwcjBxxXp/j+x1+/8LSzeF9Sns9SgHmxrHjE4xyhyOp7e9eLfGKz8cW2i6W3ivVNLu4Gu8RR2URUq208klRxivpC1/49If8Armv8qdrw36/5CvyzXmjhvhv8QrfxT4RkutRlS31DTV26gr/LtwP9ZjsDg/Qg1geCfEPiP4heO73Wbe+uLPwlZP5cMCgD7Sw6ZOM+5/AV5h8V/skfj/Wh4Xa6ELQD+2Rbf6sHcN3TtnbnPGa+ifAS6IvgnSh4ewdN8keWf4if4t3+1nOfenF837z+r9/TsKS5fc/q3b17nE/EXxPrWkfFDwhplhqEsFleyILiFcYkBkA549K0Pi3431Twta6Xpuh+WmparMYo55QCsQBAzzxnLDr05rmfiv8A8lk8Cf8AXWP/ANHCvQ/HvgLTvHujx2d3LJb3EDF7a5jGTGx68dweOPapX8NPzf3XKf8AEa8kcafhx8SfLFwPiXP9rIyYjG3l59M56f8AAa9D8J22vWnh23h8S3sV5qgLeZLEoCkZ46AZ4xzgV5RLe/FT4Ywb7xYfEuhQD5pckyRoPU/eH1O4CvU/B3i7T/Gvh6LV9PDojMUkif70bjqp/Mc+9UtU7EvS1zfryXx1468QXvjOHwL4KMceosu66vHAIhGM4GQQMDknB6gDmvWq8M+Gw3fHvxo1x/x8Dztmeu3zV/pipSvNRfm/uG3aLl6L7y7d+B/inpFq2o6f48k1C7iG82kqHa+OqjcSD+IFdX8NfHr+O/Dtw0saW2sWZ8q5jx8obB2uB1wcHj2Nd3Xhnwkwnxh8cR2//Hr5knTpnzjj+tOOsuR9U/wCWkebzX4nM/EHRvFkfxN8Nwap4kiuNRunX7JcRWwjW2+fAwvfnmvavBfh7xTok92/iLxP/bKSKohXytnlkE5PvnivP/ip/wAlo8C/78f/AKNr2+iH8O/mxS+NryQV4JN8R/FNp8SPE3h7TvM1G8mn+z6XbyAeXAc/Mx9gOea97rwzwLDHJ+0Z4tkZQXjSUoT2JZAf0pRV6iXkxydoN+aOr8IeEfHun+IYdU8R+Lvt1uUbzbKMts3EcY4A4PsKwdc8ZeK/G3ji68J+CLmOwtbHIvNRYZOQcHBwcDPAxycdcV7K+djY644rw/8AZ4AM3it5f+Po3Me/PX+P+uaa96VnskD0jdbtkureHfij4LsJNbsfGLa2lsvmT2lxGTuQdcBic/gQfSvRPBHi+Lxz4Rj1a0VYLghopYz8wilA/Ucgj2NdHchGtJhLjyyjBs9MY5rxb9nEv/ZfiJVz5Au02emdpz+mKI680X2v+IPS0l3OR17RPFp+N2m6dc+J1fWZog8N+kAVYVIc7Qnpwfzr2zwZ4e8VaLc3T+IvFH9sxyIoiTytnlkHk/jXn/iP/k6DQP8Ar1X/ANBkr2q7uobKzmu7hwkEMbSSOf4VAyT+VEXamn6/mEledvQ878Q+GviPr3iK7W08VwaPoisPs/2eLMrDAznGDwcj734Vx2sap45+EuvaXNqviJ9e0S8l8uTz0ww6Z6klTg5GDjitnT/iD478f3Fy/grSNPs9Khk8v7bqLElj9B+eADj1rjPjFZ+OLbRdLbxXqml3cDXeIo7KIqVbaeSSo4xRG6cfkN2ldHp/xfstevPBl5c6VrKWWnw2skl3CIsvcLj7ob+EYzXn/wAM/CnjfVPA9nd6L40OmWLPIEtfs4baQxzz7nmvV/iB/wAkq1z/ALBr/wDoNY/wM/5JVp3/AF1m/wDQzTirOS9PzZLd4xf9bDvi7rOr+Gfhst3p1/JBfpNDG1wgGWzw3X1ro9F1sW/w9sNb1WcsE05Lm4lbqfkBY/WuQ+P/APyTCX/r7h/mah8VGUfs3r5Wc/2XbZx/d+TP6ZqHJ8k35r8iklzwj5fqYWkX3xD+LMtzqWm60PDmgxymOARLl3x7jBJ9TkDPQUup6r4/+Et5aXmtat/wkXh+eQRyu64kjP1PIOM45IOO1dz8HFiX4U6H5WMGNy2P73mNmoPjYsTfCjV/NxkGIpn+95i//Xqqn7t6dPxFD95v1/A6u/1JJ/CV1qlhNlHsXnglX/cLKf5V4l4F8UfEX4gaKdK03U0tDbOxvNXnUM5DH5UQAdcA/wCI7994KaVvgPamXO7+ypgM+mHx+mKxf2dI1XwDeuANz6g+T64RKfKvaTXRL9SeZ8kX3/yMTxPa/Ev4aWaa+PFra1YxyKtxFOhwATgZBzxnjIIIzXs/h7WYvEPh3T9XhUol5AsoU/wkjkfgciuX+MvPwo1z/cj/APRi1Z+E/wDyS3w//wBe3/sxpRd1K/RoqSs011v+h2VcD4w0T4ga1rqwaF4httI0XygWkWPMxfnI6ZPY9RXfHgZNeQv8TPFHi7xBe6T4A0m0kt7Nts2o3zHZnJGQARjODjqT6Ut3YeyuYfiqL4ifC23t9d/4S6TXLDzljnhuYyMZ6DBLcHpkEHpXtukajHq+jWWpQgiO6gSZQewYA4/WvC/inZfEWHwHcS+JdX0Waw82MPBZxMH3buMEqOhr17wB/wAk88Pf9g+H/wBAFUtYyv0f6EvSSt1X6njnhLxv8QPE+pat4a0m8Rrr7S7nUboAi0gBK4AxyScY4P8AUaniLw38UPCGkz6/beOJdTFoPNnt5I8DaOpCtkED8OKX4Axr/bfjKXA3/aUXPtukr1Xxnz4I17/sHz/+gGs5PlpqS3sn+Ba96o4va5T8B+LV8XeCbTXJlSGRlZbhR91XU4Yj24z+NeX23iHxv8WfEl/F4a1Y6H4fsn2faEX5n9DkcknGcAgAVc+FzSL+z9rLRZ8wJebceuytL9nhIh8OpmTHmNfyb/8AvlcfpWrSc35JP7zNNqC8219xzfjuy8eeDPB2oQatrS+ItEvYjbySSJsmt3P3W7kjIA6n8K9A+C3/ACSjRvpL/wCjGq38WUjf4W6+JMYFvkZ9Qwx+tVPgt/ySjRvpL/6MalF/Ffy/Ucl8NvM7uUOYnETBZCp2kjIB7V8za9oni0/G7TdOufE6vrM0QeG/SAKsKkOdoT04P519OV4f4j/5Og0D/r1X/wBBkpRX7yP9dGU/gl6HoHgzw94q0W5un8ReKP7ZjkRREnlbPLIPJ/GvGrfUtdsvjp4otPDdvFJq1/I8EUk3+rgGVZpG9cBf/wBfSvpWvDfAcat+0X4vcjLIku0+mXSiOtRejFLSD9UXNT8E/FOwsZtTtfHz3d5EpkNr5e1GxyQucr+BArqvhP44uPHHhV7m/RF1C0l8i42DAc4yGx2yO3qK7qT/AFbfQ14n+zzkab4n29ReLj8moUrcy7K/4g1on5/oWta8WeKvHPji78KeC71NNstPyL3USuSWBwQD254AHJwecVn6+nxF+FsEWuyeJj4h0pZFS6huUIKgn3JIHbIPXHFcn8K7Tx3e3Gvy+E9S0u0k+0L9rF6uWY5bGPkbj71dxrfg/wCMHiLR7jStS13w7LaXACyIFZScEHqIsjkClqoq243Zyaex6zomr22v6HZatZkm3u4llTPUZHQ+46VfrmPh74evfCvgjT9F1GWGS5tg4ZoWLJy5IwSAeh9K6erlbmdtiI3tqeCP498aN8UfEPhfRpFup5pzFZfaMeXZqpyznjkAeufx6Vqan4H+KdjYzanbeP5Lu8iUyG1CFEbHJC5yv4FRVTwHGrftF+L3IBZEl2n0y6V7hJ/q2+hrPalGXWxbf7yS6XOE+E3ji48ceFXuL9EXULSXyLgoMB+Mhsdsjt6isLx1468QXvjOHwL4KMceosu66vHAIhGM4GQQMDknB6gDms39nbiw8Sj/AKfV/kag+Gw3fHvxo1x/x8Dztmeu3zV/pirdpTS6Wv8AgT8MW+zt+Jdu/A/xT0i1bUdP8eSahdxDebSVDtfHVRuJB/ECut+GPj7/AITrQpXuoVt9UsnEV3EvAz2YA9AcHjsQa7mvDPhJhPjD44jt/wDj18yTp0z5xx/WiLvLl8n+A5K0ebzX4kvjD4ja34X+L1xp9uZ722ezRLXT1A2vcOo2+/WtnQfCXxLm12x1jX/FqJCJRJPpsBITZ/c4AH8/rWDqUMc/7VFiJFDBLdXAPqIWwa9zpQ0ipddfzYS1k4+n5HiHjHx74o0T4xvoukMbtLi2jitrJ8eWJnUYc98A8nmp9Y8G/FS00641iPx2097EhmaziQpGcDJVf4T7ZUVW1CNZP2qbHcM7bYMPr5LV7Vef8eNx/wBc2/lU7U+brr+bK3qcvTT8jw/wz468d/E6wi0rRprfSprWPOpaoUzuJJ2hF7Egc/j0qv4kn+InwonstXuvEza7pcswjmjmU9euCDkjIBwQe1av7OKKPDuuOANxvgCfYJ/9etX9oL/kmn/b7F/7NVVHyWa8vxJgua6fn+B6dZXcd/YW95D/AKqeJZU+jDI/nXnniHw18R9e8RXa2niuDR9EVh9n+zxZlYYGc4weDkfe/Cur8N3UNl4A0q7uHCQw6bFJI5/hURgk/lXnmn/EHx34/uLl/BWkafZ6VDJ5f23UWJLH6D88AHHrTmkptLoKDbgm+pjaxqnjn4S69pc2q+In17RLyXy5PPTDDpnqSVODkYOOK9I+KzBvhXr7DobUEf8AfS1478YrPxxbaLpbeK9U0u7ga7xFHZRFSrbTySVHGK9e+J3/ACSLWv8ArzX+a1E9aTv5/kVHSpG3X/Mh+DH/ACSjRf8Adk/9GNXe1wXwY/5JRov+7J/6Mau9rWp8bM6fwo8l8deOvEF74zh8C+CjHHqLLuurxwCIRjOBkEDA5JweoA5qnd+B/inpFq2o6f48k1C7iG82kqHa+OqjcSD+IFUvhsN3x78aNcf8fA87Znrt81f6Yr3Os4r3Iy6tXNG/fcei0OE+Gvj1/Hfh24aWNLbWLM+Vcx4+UNg7XA64ODx7GvIfiDo3iyP4m+G4NU8SRXGo3Tr9kuIrYRrbfPgYXvzzXTfCTCfGHxxHb/8AHr5knTpnzjj+tSfFT/ktHgX/AH4//RtNWlOnLvb9SZe7GpHtf9D0DwX4e8U6JPdv4i8T/wBspIqiFfK2eWQTk++eK6TU4r2bTLmLTriO2vWjIhmkTeqN2JXvVuih6qw1o7nzBo+geLbv40axpsHiow61FCTNqPk58xcJ8u3sOR+Ve9eDdF8Q6LY3MXiHX/7YnkkDRy+Xs2Ljpj615p4X/wCTnPEn/Xu3/oMde4U1/Dj5r9Ql8cvJ/ofL/wAOLzxRLr3iLQ/Cnk293eXJknv5xlbaJWYcDByxLccf4jr/ABD4d+KHg/SZ9ftvG76mLQebPbyRcbB1wDkED8OKT4Axr/bnjKXHz/aUXPtukr1bxnz4I17/ALB8/wD6Aazk+WmpLey/IpLmqNPa5U8B+LV8X+C7PXJUWGRlZbhQflV1OGx7d/xrzeHxB4z+K+v38PhfVRoXh6xfy/tapmSZux9cnrgEADGaf8LnlT9n7WWhz5oS8KY9dlcx8J9P+I1x4Skk8Jato1rYG6cPHdITJ5mFyT+7bjGO9aSSdRrsk/vITagvNtfcb+pax45+Eeq2FxrmtnxD4fupPKkeRMSRn2zkg4yRyQcGvcIJo7m3jnhYNFIodGHcEZBrxLxN4A+LPi/Sxpus614emthIJQq7kIYZwciL3NeveHbCfSvDWmafdOj3FraxwyMhJUsqgHBIHHFC+F3B/ErGk7KiM7kBVGST2FeIw+IPGfxX1+/h8L6qNC8PWL+X9rVMyTN2Prk9cAgAYzXqvi9pU8F640OfNFhOVx67DXg3wn0/4jXHhKSTwlq2jWtgbpw8d0hMnmYXJP7tuMY71K1k79EU9Iq3Vm/qWseOfhHqthca5rZ8Q+H7qTypHkTEkZ9s5IOMkckHBr2e71azs9Fl1eaYCyigNw0g/uYzn8q8b8TeAPiz4v0sabrOteHprYSCUKu5CGGcHIi9zXS+P7K80f4C3VhK6vc21jBBK0ZJU4ZFbBIBx1ok2oNvfp/XkEUnNJbPc5XStT+I3xYnudQ0fVk8PaDHIY4So+dyPcDLH15A9K7TwX4Y8d6Frztr3itdW0kwnahXLmTIxnIyBjPRqsfBxIk+FOh+VjBjctj+95jZruqtpQdkQnzK7PELz/k6mz/69B/6Jatn43+JtZ8N6focmj6hLZvPdMkpjx8y4HHIrGvP+TqbP/r0H/olqf8AtF/8gvw5/wBfrf8AoIqI/DD1/wDbi/ty9P0PQvH+qXuj/DrVtSsJzBeQWweOUAEqcjnB4715t4X1v4kfEnw/bf2XqcOkWlsnlXGoSRhpbqUddoAwAAR0x/Su++KX/JJtc/69B/6EtU/gmsa/CjSPLxyZS2PXzGppXcr+X6k3tGPn/wAA4i/8R/ED4UaxZSeJdRTXdBupNjShfmQ98HAIbHODkHFeneMLfWdb8LCTw1rceneZGZnuPK3l4tucL6E8c1znx7SJvhbdGTG5bmEx5/vbsfyzW54MaR/hHpTS53/2UOvps4/TFTLWnK/T/K5cVapG3X/Ox4t8IvDni/W/D99P4f8AFh0iBborJF5O/e+0Hdn6V6V8StS8QeEPhLbyx6xI2rwyxRS3qKAZCc5OD61k/s4f8idqv/X/AP8Asi1q/H//AJJhL/19w/zNVW0Vl/d/Qmlq7vz/AFO48LXst34N0i+vJi80tlFLLK3clASTXkw8VeN/il4ivrPwffJo+hWT7GvCPmkPODnBOTjIAxgdTXd2zyJ8EUeHPmjQcrj18muc/Z4SJfh3OyY8xr+TzPX7q4/Sqkk6sl2/zsTFtU4vv/kXPDXg/wCImi+JLObUPGg1LSQT9pikUl2GDgDcD3xyCK9OoopXHY8s+NPjDV/B9roN1pV28CyXTC4VVU+YgAO3kHHfpVNNN+KPjW2TWI/ENv4dtLgeZa2MaZcIeVLtjOSPf8BVD9o4KdL8Oh/u/a3z9Nor2m2CrawhAAgRQuPTFTFXTb7/AKIcnZpLt+p5B4N8d+J9D8dDwR45eOeeYf6JeqAN5P3eQBuBwQDjIPBrS/aA/wCSYv8A9fkP9a5z40Yj+JvgeWDi681Rx1wJVx/M10f7QH/JMX/6/If60pu9NSfe33NFRVqjS7X+9M7XwV/yI2g/9g+D/wBAFcPeeEPidrup3cl141j0myErC3jsockpn5ScFeo9WNdPpGt2fhz4U6bq9+xW2tdMhd9oyT8gwB7k4H41xmk+Lvid48g/tDw5pukaTpLMRDNfMzu4BxnjOf8AvnHvWlTWpIzp6U0UNP8AEHjH4e/EjTPDfiTWP7Z0zVCqw3Ei4ZSTtBB6gg4yCSMGuu+M2u6n4d8Atf6TeSWl0LqNPMTGcHORzXmHjS28V23xK8FDxXqOn3kzXcZhNnGVCL5qZzkDPNd/+0B/yTF/+vyH+tZyb9mn1vb8UXFfvGvL9GZWlj4jfErSoNUttdTw5pTIFgWJN005AwXYjBAJBxyPp3qhF4h8bfDPxzpek+JtXGs6PqThEncfMuSFyCeQQSMgkjBr1fwNGsXgLQEQAKLCHj/gArzD4/f8hTwae/2x/wD0KOtJe7VUVtexEfep38rnq3irxFa+FPDV7rV4C0dsmQgPLseFUfUkV5RommfEv4iWA8QTeLG0CzuCWtLW2jP3OxOCDj3JJNav7QzSr8OYAmdjX8YfHptbH64qhoGk/GE+HdNOm6/4eSxNrGbdWjORHtG0H911xiojrzN9NC5aWXfUs+EfGPiXw74+HgbxncpevOu6yv1GC+ckA8DIOCOeQR3r2CvEW+G3xE1fxvoviDxDquiTnTpoyTAzo3lq+4gARgE9ete3VX2Vfcn7TtsFFFFIYUUUUAFZniLSV17w5qOks+wXlu8O7+6SMA1p0UmrqzGnZ3R538P9STwt4RtPD2uW11ZahYb4mX7NI6zDcSHjZVIYHPbms/4qWOueNPBNxDpekTLb28iXAFwpWe42nokfUDBJ+bBOMAd69Uopy97V7ij7uxg+G9VhvraK3sbCaGxt7aMCR4jEobH+rVWAJ2gcnp29a3qKKbd3cSVlYwtd8G+H/E08U2s6bHdyRKURmdl2jOccEVk/8Kn8Df8AQvw/9/ZP/iq7OikM4z/hU/gb/oX4f+/sn/xVX9H8A+F9A1FL/S9IjtrpAVWRZHJAIwepIrpKKACsDxjrt74e8OT3unaTd6pen5ILa2haQlj0LBQSFHc/h3rfopNXQ07M8I0X4heLdGilYfCzXLi8uW8y6u5BNvmf1P7ngDoFHAFdn4E1vX/FfiS81XW/Dd3ocdrai3t4rhHBcu25iCyrn7q9BXolFUnrclrSx5H4f8N2fgL4i63resT3ypqDuba4ERe3KOwYh2UEq4Ix82BjkH0q/E24l+Jaad4Y8KxveILkT3d8EYQQgAgAuRgnknA9K9moqbKyT2RV9W1uzn5bW68LeA/suh2v2260+yCW0Lf8tWVcDP164qLwLqmva34Vhu/Eumf2fqDMytDsKZUHhtrElc+hrpaKpu7bfUlKySXQ828KWmgfDSTULG+t30+W4mMgv5A7Q3SZO35uQjAHBU455GQazPEWny/FTxjo0dnBMPDekyGa4vZYyi3Dkj5I9wyw4xnpya9copLdN9Bvr5h0GKKKKACvIfj1o2qaxpugppmm3l80V2zSC2gaUoMDk7QcCvXqKOqY7mF4mvtY0vwvNd6Fp4v9RiCFLVv4xkbh1HOM/wD168/T4z6wieVc/DnXlvBwY0RiCfqUz+leu0UdRLRJHknwy8L6/N411nxz4hsBps1+pSGzP3gCRkkduFA55PJxXrdFFO+iS2Qurb6nknxr8La1qR0TxDoVq93daTKWaCNdzEZVgQOpwV5A55ra8G/EnUPFOrQ6fP4Q1TTh5bNNczqwiRgOgJUdT64r0GilHRW6Dlrr1PHrvRdVb9pS11VdMvDpy2wU3YgbyQfKYY34x14617DRRQtEkD3ueP8Aw40bVLH4u+M727028t7S4dzDPNAyRy/vc/KxGDxzxUXjfwl4j8NePV8e+D7T7c0i4vrFRlm4wcAckEAdOQRmvZaKSVlFLpoN6uTfU8fX43alIgii+H2tvenjysNjd9dmf0r0fwtqGq6p4etr3WtOGnX8u4va8/uxuO3Oe+MVs0VRIV4HPbeI/hd8UdY12Dw/daxo+qlmL2qlmXc27BwDgg5HPBFe+UVOz5kVurM8V8Qax4y+J3h+90zTfDV3oumeS0k896D5lxtGViRcDqQBnn/HsPg/p17pXwz0yz1C0ntLlGl3wzxlHXMjEZB56V3VFUtL26kvW1+h494J0XVbT47eK9RudMvIbGdJBFcyQMscmXT7rEYPQ9K9ffmNgPQ06ipt7ih2Vh/acu55D8B9G1TR7PxCup6beWRlu1aMXMDR7xg8jcBkVkX+j+JfhV4/1DxBoOjzavoOpEtPb24JaMk5xgAkYJODgjBxXuted6t8ZfDnh/xLfaJrMN7aS2zgCYRb45AQDkY57+lO/vK29v8AgD6O+zZzms+OPFPjnQb7S9H8KX2k2skD/a9Qv8qscYBLBRgZJGR17/jVr9nb/kn11/2EH/8AQUqp4z+N+hX3h+50vwwLrUNSvozBHtt2UJuGCeRknB4AFdf8JPC114T8A2tnfJ5d5O7XE0Z6oWxhT7gAZ96cNOZ+S/MmX2V5/ocvd6LqrftKWuqrpl4dOW2Cm7EDeSD5TDG/GOvHWtn4teAr3xZYWWp6I4TW9MfzIATt8wZB2g9iCARn+tekUVNtEu3+dyr6t9zxm0+M2v6dbraa94E1b+0YxtdoI2CyH1AK8Z9ia7XwN4p1/wAUm9uNV8NzaLZps+yicnzJc53E5A9u3fvXY0VV+5NuiCvI/jp4c1TxNbeHLLTLO4nZrxlkeKJnWEMANzkDge5r1yipavuUnbY8etviF4r8FWUWi+IvB2oX81qoiivrHLR3CjgHocHGO+fYVS8MeH/Enj/4jweNfE2mSaXp9iB9itJQQxIyV4ODgE7iSBk4xXt1FUnrzPclrTlWx5v8WvAV74ssLLU9EcJremP5kAJ2+YMg7QexBAIz/WsG0+M2v6dbraa94E1b+0YxtdoI2CyH1AK8Z9ia9moqVpp0Kepx3gbxTr/ik3txqvhubRbNNn2UTk+ZLnO4nIHt27965X41+Fta1I6J4h0K1e7utJlLNBGu5iMqwIHU4K8gc8163RTe6a0sJdb9Tz7wb8SdQ8U6tDp8/hDVNOHls01zOrCJGA6AlR1PriuN+NXh3XU8Vad4g8O6ZeXk01nLaT/ZIHlKgqVydoOOHP5V7nRSkk7Di7XOW+HXh8+GPAWk6bJGUnWESTgjBEjfMwP0zj8K8Q+IHgjxIvj/AFXTtI0m+m0nWrmCeSeG3dokOTnLAYGGLE5r6Yoqm7z52StI8pBZWkVhYW9nCMRQRrEg9AowP5V4pqmgeKPhh46vvEvhnS31bRNRJa6s4gS6EnJGACeDkggHg4Ne5UUnfm5uo1ZR5eh4/wD8Lq1a8HkaX8PtZmvG4CyBgoPuQnT8q9Fexk8TeDfsWuWwglv7MJdQr/yzZl5A69D/ACrbooaTTTBXTujwPQNT8ZfB3z9D1Dw9c61ofms9tdWYJ25+gOM9dpxznmuo0v4qeIfEWr2dnpXgXUYrd5kW4u7sMFijJG49AM4z3/A16pRTTfXUTXbQ5P4m2dzf/DfXLWzt5rm4kt8JFChd3O4cADk1W+Etjd6b8M9ItL61ntbmNZN8M8ZR1/eMeVPIrtaKS0v52/Ab1t5Hl/x30rUdY8CQW+mWF1ezi+RzFbQtIwXa3OFBOORXoGgxyQ+HdMilRkkS0iVkYYKkIMgjsa0KKI6Jru7g9Wn2Cvn+D/hIvhP8R9cvR4dvNV0fVZGdZLVC2MsWHIBwRkgg4r6AopbO6HurM838Q6pqPjT4Oa3PH4f1Czup42jispImaZwGXBC4zzz27Vp/CWxu9N+GekWl9az2tzGsm+GeMo6/vGPKnkV2tFPa9utvwJte3lc8v+O+lajrHgSC30ywur2cXyOYraFpGC7W5woJxyK7KLRYtW8BwaNqEbrHcaekEqMMMpKAHg9CD/Kt6ilZWa7/AOVir6p9jwPQNT8ZfB3z9D1Dw9c61ofms9tdWYJ25+gOM9dpxznmuo0v4qeIfEWr2dnpXgXUYrd5kW4u7sMFijJG49AM4z3/AANeqUVSb66ktdtAqO4Ba2lABJKEAD6VJRUtXVik7O58z/D7W/Gnw+ttRtovh9rN8LucS72tpo9uBjH+rOa7WL4teN5JkRvhdqyKzAFik3A9f9VXsdFVfuJ9bHlPxr8Iax4i0zStV0W3NzeaZKXNsvLMp2nIHcgqOPeoLX4t+JtQt0tLL4eaqdVZdp80MkKt6klRgfXH1r12ipStp0B9H1PEvh54T8S6H8Y9TvtchlmN1YtLJepEwhMrlGKK3Tg5H4Vc+JWi6rf/ABb8GXtnpl5cWlu6GaeGBnSL97n5mAwOOea9hoqk7OL/AJf+D/mJq6ku4V5x8afCOoeLPBiJpURmvLKcXCwjrIMEED35z+Fej0VLV0UnZnlXg34m61qM+l6Jf+C9WguvlhuLoxssUeBgucrx06H86p3ei6q37Slrqq6ZeHTltgpuxA3kg+Uwxvxjrx1r2Giqv7yl1Jto49Arx/4caNqlj8XfGd7d6beW9pcO5hnmgZI5f3uflYjB454r2CiktJc3k1943rHl9PwCvNvEvxB8UeF/Et1byeC7zUtH+U293ZhicFRndgMOufSvSaKXUZ4P4s8Q+KfirpSeHNI8GX9hbyzI895fqVVQDngkAD8yfavaNB0tdE8P6fpavvFpbpDv/vbVAzWhRVLRWXUl6u7M/XdN/tnw/qGmb9n2u2kh3f3dykZ/WvDfBPiTxP8AC2xuPDereDNTvUWdpIZ7RCwbOAcEAhhxnOc+1fQVFStG2upT1VmfO3xF07x34/0i31qbQLiytLWcJa6UiNLcMG+9K4AyMYAxjv8An6n8Qdd1rQ/B6xaBpV/e6rcoIYvs1s8gg45dtoOMds9/pXbUU2vd5egr+8pdjz/4b/Du38M+EpbfVIkuNR1RS2oNJ82dw/1ee4GTn1JNcz4P07Xvhp4/uvDy6fqF94V1B/Mt7mGB5VtmPTcQCB6HPsa9mop397m/qwre7b+rnj3xM0XVb/4r+C7yz0y8ubW3kQzTwwM6RfvQfmYDA455rr/HXibxJ4ZexuNF8OSa1Ztv+1pDnzExjaRjJ/vfwnp2rsqKlaRUV3b+8e8r+Vjxy++LWv6xp8+n6R8PtZ+3TxtGDPG3lpkYyfl5/HFdP8JPBt54K8Gi01EqL65mNxNGpyIyQAFz3OBzXeUVS0vbqJ628grx/wAb+EvEPh/x5H4+8IWn22Vl231iPvSDGCQO+QB05BGea9goqet1uV0szxq7+L/ibU7R7HRPAOrx6rIuwNOjFIj6/dGce+K6P4T+ArnwZo1zc6q6yaxqLiW5IO7YOcLnuckkn1NehUVS0uS9dDx74k6Lqt/8W/Bl7Z6ZeXFpbuhmnhgZ0i/e5+ZgMDjnmvYaKKS0jy+bf3jesub0/AK8e8E6Lqtp8dvFeo3OmXkNjOkgiuZIGWOTLp91iMHoelew0ULSXN5P8Qesben4BXiereH/ABL8NfHl74o8MaW+raNqOWu7KHO9CTk4ABPXJBAPUg17ZRS63Q+lmeJaz8SfFvi/TJtE8NeCtUtLm6UxSXVypVYlPBwSAAfcn8K7/wCG/gtPA3hKHTGdZLuRjNdSL0MhxwPYAAV11FUtL26kvW1+h4t8U9E1/SfiDo3jvRNNl1KO1RY54IlLMMFuwycFWIyBxium0fxTdfEnStZ0iXw3qWjwy2Txi5u1IVmYFcD5RnGc16HRU291xe2v4lX95SW+n4Hz74J8SeJ/hbY3HhvVvBmp3qLO0kM9ohYNnAOCAQw4znOfaoPiLp3jvx/pFvrU2gXFlaWs4S10pEaW4YN96VwBkYwBjHf8/omine7Te6EtNjF17R21zwdfaQG8t7qzaEFv4WK4GfxrxjwP4w8S/DrSH8L6p4J1a7kgmZoJLaNiGDHJGQpBGehB719A0Ufab7gl7qj2PMvjHZ6lr/wtRLLS7ua8lmgla1hiaSRO5BAGeM88V02i6KmofDTT9F1OCRFm0yO3nidSrJmMAgg9CK6eiiytJdH/AMMGt0+x4RoN/wCMPg79o0S98PXWt6F5rSWt1ZAkpn1wDjPocc5wTTdeufGHxkltdItvD91oegJKJLi5vAQXx9QM4ycAZ56mveaKN7c2obfDoYl3pUen+CbnSrCJjHDp7wQxqMscRkAYHUmuJ+A+lajo/ga5t9T0+6spzfOwjuYWjYrtXnDAHHFeo0U09W+/+dxW0S7HF/Fixu9R+GesWljaz3VzIibIYIy7t+8U8KOTVj4ZWdzYfDfQ7W8t5ra4jt8PFMhR1O48EHkV1lFJaX8xvW3kNdQ6Mh6MCDXz54Zn8S/BzXNXsLnwvfarpl5KHhubNC2cZwcgEcg8g4Ir6FopLR3Q91Zngvjl/G/xM8LXMkPhy60nS7PbNHazKzXN7JnAAXAIABJ6fn29c8E209n4F0K2uYZIZ4rGJJI5FKsjBRkEHoa3qKa0TS6kvVpvoePfBHRdV0nVPFb6lpl5ZrPcq0RuYGjEg3Pyu4DPUdPWvSfFkMtz4P1qCCJ5ZpLGZUjRSzMxQgAAdTWxRSkrx5fKxSdpc3nc80+CujXlj8NDp+r6fc2sklxMHguYWjYq2B0YA4NcXpSeK/gtruoWsWhXWteG7uXzIntgSU9DwDg44IPXHBr3+iqbblzL0JSSVjw3xVrXjH4neGL2x0vwveaVpkcRmmluwfNuSnzLHGmATkgdM/0Pd/COxu9N+GWk2t9az2tygk3wzxlHXMjEZB5FdvRQtLpdQetr9Arxb4p6Jr+k/EHRvHeiabLqUdqixzwRKWYYLdhk4KsRkDjFe00VPVNdCujT6nGeCvHd34vuriOXwxqWlQwxhhNdqQrsTjaPlGfWuR8E6Lqtp8dvFeo3OmXkNjOkgiuZIGWOTLp91iMHoelew0VS0lzeTX3ktXVvT8Br8xsB6GvI/gPo2qaPZ+IV1PTbyyMt2rRi5gaPeMHkbgMivXqKS0bfdWG9VY8N1TQPFHww8dX3iXwzpb6tomoktdWcQJdCTkjABPByQQDwcGtL/hdWrXg8jS/h9rM143AWQMFB9yE6flXsFFJaK3RDerv1KekT3lzo9nPqNuLe9khRp4V6RuRyvU9DVyiiqerJWiPHvBOi6rafHbxXqNzpl5DYzpIIrmSBljky6fdYjB6HpXr78xsB6GnUVNvcUOysP7Tl3PIfgPo2qaPZ+IF1PTbyyMt2rRi5gaPeMHkbgMim+N/CXiHw/wCPI/H3hC0+2ysu2+sR96QYwSB3yAOnIIzzXsFFN7prp/wwd79Txq7+L/ibU7R7HRPAOrx6rIuwNOjFIj6/dGce+K6P4T+ArnwZo1zc6q6yaxqLiW5IO7YOcLnuckkn1NehUU1pcT10PHrvRdVb9pS11VdMvDpy2wU3YgbyQfKYY34x14617DRRSWiSG97nj13ouqt+0pa6qumXh05bYKbsQN5IPlMMb8Y68da9bu1LWc6qCSY2AA78VNRSavHl9fxGn73N6fgeR/APR9U0bw/rEWqabeWMkl6GRbqBoiw2jkBgMitL45aXqGr/AA9+zabY3N7cfa4m8q2haRsDOThQTivSqKc/e/D8Ai7O/r+JzNno8mo/DO30acPbyz6Uts4dSGjYxbeR1BB7V5H4J8SeJ/hbY3HhvVvBmp3qLO0kM9ohYNnAOCAQw4znOfavoKim3eTl3JStFR7Hzt8RdO8d+P8ASLfWptAuLK0tZwlrpSI0twwb70rgDIxgDGO/5+sfESyur34XavZ2ltNcXUloqpDFGXdjleAo5JrsaKlpOLh3KT95S7HFfCWxu9N+GekWl9az2tzGsm+GeMo6/vGPKnkV2tFFVJ3dyYqyseP+N/CXiHw/48j8feELT7bKy7b6xH3pBjBIHfIA6cgjPNRXfxf8TanaPY6J4B1ePVZF2Bp0YpEfX7ozj3xXstFSlpyvYpvW/U89+E/gK58GaNc3Oqusmsai4luSDu2DnC57nJJJ9TWB8SdF1W/+Lfgy9s9MvLi0t3QzTwwM6Rfvc/MwGBxzzXsNFVf3lLsTb3XHuFFFFIZ4V4psvEPgP4wTeM9P0W41bTL6PbMtupYrlQGBwDg5UEEjB6V6b4L8W3Pi20urmfQL/SUicLGLxSDLkZJGQOB+NdRRQtI8oPV3PHvgjouq6Tqnit9S0y8s1nuVaI3MDRiQbn5XcBnqOnrXpPiyGW58H61BBE8s0ljMqRopZmYoQAAOprYopSV48vlYadpc3nc80+Cmj3lh8NTYavp9xayPcTb4LqFo2KnA6MAcGuPsbPxZ8F9dv0sNFn1zwxdyeYv2cEvF6ZwDtIHByMHA5r3uiqbblzL0JSSVmeQj4xa/qrC20H4f6rJcMcb7kMET3OF/qK9cQsUUsMMRyPenUUdA6jJYknheGVQ0cilWU9weCK8HsbPxZ8F9dv0sNFn1zwxdyeYv2cEvF6ZwDtIHByMHA5r3uip2d0VurM8hHxi1/VWFtoPw/wBVkuGON9yGCJ7nC/1Fem6xpMOv6Bd6XeDEV3A0UmP4cjqPoea0aKbSasJNp3PAfDms+L/g8s+g6r4cu9W0cSs9tdWYJAz1wQCMHrg4IOa73wb8Q9X8X699n/4RK+03S0iZmvLoNy/GFHygevc16DRTTfXUTXY8eu9F1Vv2lLXVV0y8OnLbBTdiBvJB8phjfjHXjrT/AI9aNqmsaboKaZpt5fNFds0gtoGlKDA5O0HAr16iktEl2d/xuPq33/yscV8UgR8J9dBGCLQf+hLXlvw48U+IvAng21ln0C61jQL3dNBPZDc9u2SGVhjpkZ7deteq/Fj/AJJb4g/69v8A2YVU+DH/ACSjRf8Adk/9GNRHeT9P1E9FFev6HnXiG+8UfGnUbHSLHQrzSdBhlElxcXSkZPTJOACQM4UZ5Ne7QabBa6PHpkI228cAgQeihdo/SrlFFly8vcet+bsfPHg/U/EvwgvtU0S/8K6hqVlPP5kE9ohIYjjIIBBBGOOorr/ij/avi74PQTWuhX6XtxPFIbBYWkmjGT1UDPp2716xRSfvKz8vwGnZ3Xn+Jg+FbNl8C6RZXkDo39nxRTQyKVYfIAVIPINeP6bB4q+Cuu6hDBolxrfhm7k8xGtwS0foTgHaccHIwcDBr36iqk25OS6kpJRUex5l4d+KWreKPEVnYWfgzUbWydz9pvLkMFiXB/2cdcd/wr02iijoM8Q/aPj87SvDse7bvu3XPplRVy0+JfiHwZYQ6N4m8I6ldXNsgijvbMborhQMK2ccHHX+Qqt+0V/yD/Df/X6/8lr2mL/Up/uipj8L9f0QS3Xp+rPD/C+h+I/iJ8SYPGniLTZNN0yxwbO2mBDMRnaACASMncWwMnpXV/HDTL/Vvh29rptjc3tx9ribyraJpHwM5OFBOK9Iookk4qK2Q07NyZwGpeFrzxD8FYNAVGgvm06AKkwKESIFO1genIx7Vw/g7x/4k8GeH7fwzqfgPWLi5s8xxPbxNhwSSP4SO/UE5r3eiqbvJvuSlaKj2Pn3xBoPjjxD418LeKdV0iWKM30aLYW6NIbOFXVt0hHQnJJzjGPwHdfHDTL/AFb4dva6bY3N7cfa4m8q2iaR8DOThQTivSKKlq8eXzv+X+RSdpc3lYxvCMEtt4N0WCeJ4po7GFXjkUqysEGQQehrzj43aNqmraj4TbTdNvLxYLpmlNtA0gjGU5baDgcHr6V7BRVSd583ncmKtHl8rGB4z8LweMfCl7os7+WZlBikxnZIOVP5/pmvKPD3jTxj8NtPTw74j8J32oW9rlLa8tAWBTsMgEEenIIHUV7tRUrRu3Ue616Hm/hj4i+IfFXiK1tofBl7p+knd9ovbvcMfKSAowB1x3PWl+L3ijxR4X0rTpvDVsZGmnKzyCDzdgx8ox2zzz7V6PRTetrAtHdmfodzeXmg6fdahB5F7Nbo88WMbHKgkY7c1oUUU27u4krKwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVa70+yv0C3lnb3KjoJog4H5irNFAFGz0XStPk8yy0yztn/vQwKh/MCr1FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARXFtBd2729zDHNC4w8cihlYe4PBpLW0trK3W3tLeK3gT7scSBFH0A4qaigAooooAKKKKACiiigAooooAq3umWGpBBfWNtdCM5QTxK+0+oyOKtAYGB0oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//2Q==
None.
1
APhO_2025_1_A_2
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Calculate the numerical value of $h_{\\text{max}}$ in $km$ assuming that the dimensionless factor i(...TRUNCATED)
"[[\"Award 0.1 pt if the answer correctly calculates $\\\\omega = \\\\frac{2\\\\pi}{24 h} = 7.27 \\\(...TRUNCATED)
["\\boxed{21.9}"]
["Numerical Value"]
["km"]
[0.2]
text+illustration figure
Mechanics
APhO_2025
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
2
APhO_2025_1_B_1
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Find (1) the direction and (2) magnitude of the gravitational field generated by the Sun ring at a (...TRUNCATED)
"[[\"Award 0.2 pt if the answer correctly expresses the magnitude of $U(z) = -G \\\\frac{M_S}{\\\\sq(...TRUNCATED)
"[\"\\\\boxed{The direction of the gravitational field is toward the center of the Sun ring.}\", \"\(...TRUNCATED)
["Open-Ended", "Expression"]
[null, null]
[0.2, 0.8]
text+illustration figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
3
APhO_2025_1_B_2
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Find (1) the direction and (2) magnitude of the gravitational field generated by the Sun ring at a (...TRUNCATED)
"[[\"Award 0.5 pt if the answer presents the idea of using Gauss's law to calculate the gravitationa(...TRUNCATED)
"[\"\\\\boxed{The direction of the gravitational field is outward along the radial direction.}\", \"(...TRUNCATED)
["Open-Ended", "Expression"]
[null, null]
[0.2, 2.0]
text+illustration figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
4
APhO_2025_1_C_1
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Find the mass $m$ of one of the two excess regions indicated in Figure C.1. Express your answer in (...TRUNCATED)
"[[\"Award 0.2 pt if the answer includes the idea of transforming the ellipsoid of revolution into a(...TRUNCATED)
["\\boxed{$m = \\frac{h_{\\max}}{2 R_p} M_E$}"]
["Expression"]
[null]
[0.8]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
5
APhO_2025_1_C_2
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Given this idea, find the torque $\\tau$ exerted by the Sun ring on the Earth. Express your answer (...TRUNCATED)
"[[\"Award 0.1 pt if the answer mentions that the net torque acting on a perfect sphere of radius $R(...TRUNCATED)
"[\"\\\\boxed{$|\\\\tau| = \\\\frac{3}{5} \\\\cdot \\\\frac{G M_E M_S}{d_{SE}^3} \\\\cdot R h_{\\\\m(...TRUNCATED)
["Expression"]
[null]
[1.8]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
6
APhO_2025_1_D_1
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"Give an expression for the period $T_{1}$ of precession of the Earth's axis. Express your answer in(...TRUNCATED)
"[[\"Award 0.2 pt if the answer applies Newton's second law for rotational motion, $\\\\vec{\\\\tau}(...TRUNCATED)
"[\"\\\\boxed{$T_1 = \\\\frac{4 \\\\pi}{3} \\\\cdot \\\\frac{d_{SE}^3 R \\\\omega}{G M_S h_{\\\\max}(...TRUNCATED)
["Expression"]
[null]
[1.8]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
7
APhO_2025_1_D_2
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
Calculate the precession period $T_{1}$ in years.
"[[\"Award 0.2 pt if the answer gives the correct numerical result for the precession period as $T_1(...TRUNCATED)
["\\boxed{80600}"]
["Numerical Value"]
["years"]
[0.2]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
8
APhO_2025_1_E_1
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
"By what factor $T_{2} / T_{1}$ does the period of precession of the Earth's axis change if we also (...TRUNCATED)
"[[\"Award 0.3 pt if the answer explicitly states that the torques exerted by the Sun and the Moon a(...TRUNCATED)
["\\boxed{$T_2 / T_1 = \\frac{M_S / d_{SE}^3}{M_M / d_{ME}^3 + M_S / d_{SE}^3}$}"]
["Expression"]
[null]
[1.0]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
9
APhO_2025_1_E_2
"[Precession of the Earth's axis] \n\n[Introduction] \n\nIt has been known since ancient times that (...TRUNCATED)
By substituting the data, calculate the period of precession $T_{2}$ in years.
"[[\"Award 0.2 pt if the answer gives the correct numerical result for the precession period $T_2 \\(...TRUNCATED)
["\\boxed{25400}"]
["Numerical Value"]
["years"]
[0.2]
text+variable figure
Mechanics
APhO_2025
"[\"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcp(...TRUNCATED)
None.
[{"src":"https://datasets-server.huggingface.co/assets/HY-Wan/HiPhO/--/{dataset_git_revision}/--/def(...TRUNCATED)
End of preview. Expand in Data Studio

πŸ₯‡ HiPhO: High School Physics Olympiad Benchmark

[πŸ† Leaderboard] [πŸ“Š Dataset] [✨ GitHub] [πŸ“„ Paper]

License: MIT

πŸ† New (Sep. 16): We launched "PhyArena", a physics reasoning leaderboard incorporating the HiPhO benchmark.

🌐 Introduction

HiPhO (High School Physics Olympiad Benchmark) is the first benchmark specifically designed to evaluate the physical reasoning abilities of (M)LLMs on real-world Physics Olympiads from 2024–2025.

hipho overview five rings

✨ Key Features

  1. Up-to-date Coverage: Includes 13 Olympiad exam papers from 2024–2025 across international and regional competitions.
  2. Mixed-modal Content: Supports four modality types, spanning from text-only to diagram-based problems.
  3. Professional Evaluation: Uses official marking schemes for answer-level and step-level grading.
  4. Human-level Comparison: Maps model scores to medal levels (Gold/Silver/Bronze) and compares with human performance.

πŸ† IPhO 2025 (Theory) Results

ipho2025 results
  • Top-1 Human Score: 29.2 / 30.0
  • Top-1 Model Score: 22.7 / 29.4 (Gemini-2.5-Pro)
  • Gold Threshold: 19.7
  • Silver Threshold: 12.1
  • Bronze Threshold: 7.2

Although models like Gemini-2.5-Pro and GPT-5 achieved gold-level scores, they still fall noticeably short of the very best human contestants.

πŸ“Š Dataset Overview

framework and stats

HiPhO contains:

  • 13 Physics Olympiads
  • 360 Problems
  • Categorized across:
    • 5 Physics Fields: Mechanics, Electromagnetism, Thermodynamics, Optics, Modern Physics
    • 4 Modality Types: Text-Only, Text+Illustration Figure, Text+Variable Figure, Text+Data Figure
    • 6 Answer Types: Expression, Numerical Value, Multiple Choice, Equation, Open-Ended, Inequality

Evaluation is conducted using:

  • Answer-level and step-level scoring, aligned with official marking schemes
  • Exam score as the evaluation metric
  • Medal-based comparison, using official thresholds for gold, silver, and bronze

πŸ–ΌοΈ Modality Categorization

modality examples
  • πŸ“ Text-Only (TO): Pure text, no figures
  • 🎯 Text+Illustration Figure (TI): Figures illustrate physical setups
  • πŸ“ Text+Variable Figure (TV): Figures define key variables or geometry
  • πŸ“Š Text+Data Figure (TD): Figures show plots, data, or functions absent from text

As models move from TO β†’ TD, performance drops sharplyβ€”highlighting the challenges of visual reasoning.

πŸ“ˆ Main Results

main results medal table
  • Closed-source reasoning MLLMs lead the benchmark, earning 6–12 gold medals (Top 5: Gemini-2.5-Pro, Gemini-2.5-Flash-Thinking, GPT-5, o3, Grok-4)
  • Open-source MLLMs mostly score at or below the bronze level
  • Open-source LLMs demonstrate stronger reasoning and generally outperform open-source MLLMs

πŸ“₯ Download

πŸ”– Citation

@article{hipho2025,
  title={HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?},
  author={Yu, Fangchen and Wan, Haiyuan and Cheng, Qianjia and Zhang, Yuchen and Chen, Jiacheng and Han, Fujun and Wu, Yulun and Yao, Junchi and Hu, Ruilizhen and Ding, Ning and Cheng, Yu and Chen, Tao and Bai, Lei and Zhou, Dongzhan and Luo, Yun and Cui, Ganqu and Ye, Peng},
  journal={arXiv preprint arXiv:2509.07894},
  year={2025}
}
Downloads last month
158