alibashir commited on
Commit
815e312
·
verified ·
1 Parent(s): afa8fd7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -24
README.md CHANGED
@@ -1,26 +1,80 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: question
5
- dtype: string
6
- - name: answer
7
- dtype: string
8
- - name: paragraphs
9
- sequence: string
10
- splits:
11
- - name: train
12
- num_bytes: 14327395
13
- num_examples: 4500
14
- - name: validation
15
- num_bytes: 1582995
16
- num_examples: 500
17
- download_size: 8846353
18
- dataset_size: 15910390
19
- configs:
20
- - config_name: default
21
- data_files:
22
- - split: train
23
- path: data/train-*
24
- - split: validation
25
- path: data/validation-*
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - de
5
+ tags:
6
+ - legal
7
+ - german-law
8
+ - question-answering
9
+ - bgb
10
+ - stgb
11
+ size_categories:
12
+ - 1K<n<10K
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
+
15
+ # GerLayQA 5K Filtered Raw
16
+
17
+ ## Dataset Description
18
+
19
+ This is a cleaned and filtered subset of the GerLayQA (German Legal Question Answering) dataset, specifically designed for German legal question-answering tasks. The dataset has been split into train and validation sets for proper model evaluation.
20
+
21
+ ## Dataset Statistics
22
+
23
+ - **Total Samples**: 5000
24
+ - **Train Samples**: 4500 (90.0%)
25
+ - **Validation Samples**: 500 (10.0%)
26
+
27
+ ### Train Set
28
+ - **Average Question Length**: 1100.3 characters (161.6 words)
29
+ - **Average Answer Length**: 2002.2 characters (277.7 words)
30
+ - **Unique Legal Paragraphs**: 1095
31
+
32
+ ### Validation Set
33
+ - **Average Question Length**: 1084.1 characters (159.4 words)
34
+ - **Average Answer Length**: 2001.7 characters (276.6 words)
35
+ - **Unique Legal Paragraphs**: 339
36
+
37
+ ## Dataset Structure
38
+
39
+ Each sample contains:
40
+ - `question`: German legal question
41
+ - `answer`: Detailed legal answer with citations
42
+ - `paragraphs`: Relevant legal paragraphs (BGB, StGB, etc.)
43
+
44
+ ## Usage
45
+
46
+ ```python
47
+ from datasets import load_dataset
48
+
49
+ # Load the dataset with splits
50
+ dataset = load_dataset("DomainLLM/gerlayqa_5k_filtered_raw")
51
+
52
+ # Access train and validation splits
53
+ train_data = dataset['train']
54
+ val_data = dataset['validation']
55
+
56
+ # Example usage
57
+ print(f"Train samples: {len(train_data)}")
58
+ print(f"Validation samples: {len(val_data)}")
59
+ print(f"Sample question: {train_data[0]['question']}")
60
+ ```
61
+
62
+ ## Cleaning Process
63
+
64
+ This dataset has been cleaned using GPT-4o-mini to:
65
+ - Remove HTML tags and formatting
66
+ - Remove lawyer contact information and signatures
67
+ - Normalize whitespace and punctuation
68
+ - Preserve all legal content and citations
69
+
70
+ ## Split Information
71
+
72
+ The dataset is split into:
73
+ - **Train**: 4,500 samples (90%) for model training
74
+ - **Validation**: 500 samples (10%) for model evaluation
75
+
76
+ The split was created using a fixed random seed (42) to ensure reproducibility.
77
+
78
+ ## License
79
+
80
+ This dataset is based on the original GerLayQA dataset and is released under the MIT license.