Datasets:
Dataset summary
| Domain | Total number of hours | Total number of transcribed hours | Total number of clips | Total Size of the dataset in GB |
|---|---|---|---|---|
| Agriculture | 35.19 | 35.19 | 5,852 | 2.6 |
| Health | 62.11 | 62.11 | 10,315 | 6.4 |
| Finance | 118.75 | 118.75 | 19,629 | 16.6 |
| Government | 106.41 | 106.41 | 17,530 | 12.1 |
| Education | 91.96 | 91.96 | 15,204 | 6.2 |
| Total | 414.42 | 414.42 | 68,530 | 43.9 |
How to use
The datasets library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the load_dataset function.
from datasets import load_dataset
data = load_dataset("DigitalUmuganda/Afrivoice_Swahili")
Dataset Structure
Data Instance
{'voice_creator_id': 'goqlpECAb5VyBnZwKBjzdtFSuhL2',
'image_filepath': 'mbGOfQYRpwRyk023O70C.jpg',
'image_category': 'Education',
'image_sub_category': 'Special Needs Education',
'audio_filepath': 'audio_mbGOfQYRpwRyk023O70C.webm',
'raw_text': 'Hili ni darasa la vijana walemavu. Wanafunzi hawa wanafunzwa jinsi ya kutumia mashine ambayo huwafunza jinsi ya kuandika na kusoma.',
'age_group': '50+',
'gender': 'Male',
'project_name': 'SWAHILI_KENYA',
'locale': 'sw_KE',
'year': 2025,
'duration': 15.596,
'location': 'Nairobi',
'text': 'hili ni darasa la vijana walemavu wanafunzi hawa wanafunzwa jinsi ya kutumia mashine ambayo huwafunza jinsi ya kuandika na kusoma',
'shard_id': 0,
'image_shard_id': 0}
Data Fields
voice_creator_id (string): An id for which client (voice) made the recording
raw_text (string): Original audio transcription with punctuation and capitalization
image_filepath (string): name of the image file inside the shard
audio_filepath (string): name of the audio file inside the shard
text (string): normalized audio transcription (i.e: without punctuation and capitalization)
age_group (string): age range of the audio recorder
gender (string): The gender of the speaker
location (string): geographical location of the audio recorder
duration (int): length in seconds of the audio file
image_category (string): domain of the image (eg: health, agriculture, finance), used as prompt during audio creation.
image_sub_category (string): Sub-domain label of the image (e.g., within agriculture: “seed farming” or “forestry”), used to guide audio creation.
shard_id (int): index of the shard containing the audio file in the audio_filepath column.
image_shard_id (int): index of the shard containing the image in the image_filepath column.
project (string): project name
locale (string): The locale of the speaker
year (int): Year of recording
Licensing Information
All datasets are licensed under the Creative Commons license (CC-BY-4).
- Downloads last month
- 10