Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Languages:
French
Size:
10M - 100M
License:
| annotations_creators: | |
| - expert-generated | |
| language: | |
| - fr | |
| multilinguality: | |
| - multilingual | |
| size_categories: [] | |
| source_datasets: [] | |
| tags: [] | |
| task_categories: | |
| - text-retrieval | |
| license: | |
| - apache-2.0 | |
| task_ids: | |
| - document-retrieval | |
| # Wikipedia (fr) embedded with cohere.ai `multilingual-22-12` encoder | |
| We encoded [Wikipedia (fr)](https://fr.wikipedia.org) using the [cohere.ai](https://txt.cohere.ai/multilingual/) `multilingual-22-12` embedding model. | |
| To get an overview how this dataset was created and pre-processed, have a look at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12). | |
| ## Embeddings | |
| We compute for `title+" "+text` the embeddings using our `multilingual-22-12` embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at [cohere.ai multilingual embedding model](https://txt.cohere.ai/multilingual/). | |
| ## Further languages | |
| We provide embeddings of Wikipedia in many different languages: | |
| [ar](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ar-embeddings), [de](https://huggingface.co/datasets/Cohere/wikipedia-22-12-de-embeddings), [en](https://huggingface.co/datasets/Cohere/wikipedia-22-12-en-embeddings), [es](https://huggingface.co/datasets/Cohere/wikipedia-22-12-es-embeddings), [fr](https://huggingface.co/datasets/Cohere/wikipedia-22-12-fr-embeddings), [hi](https://huggingface.co/datasets/Cohere/wikipedia-22-12-hi-embeddings), [it](https://huggingface.co/datasets/Cohere/wikipedia-22-12-it-embeddings), [ja](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ja-embeddings), [ko](https://huggingface.co/datasets/Cohere/wikipedia-22-12-ko-embeddings), [simple english](https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings), [zh](https://huggingface.co/datasets/Cohere/wikipedia-22-12-zh-embeddings), | |
| You can find the Wikipedia datasets without embeddings at [Cohere/wikipedia-22-12](https://huggingface.co/datasets/Cohere/wikipedia-22-12). | |
| ## Loading the dataset | |
| You can either load the dataset like this: | |
| ```python | |
| from datasets import load_dataset | |
| docs = load_dataset(f"Cohere/wikipedia-22-12-fr-embeddings", split="train") | |
| ``` | |
| Or you can also stream it without downloading it before: | |
| ```python | |
| from datasets import load_dataset | |
| docs = load_dataset(f"Cohere/wikipedia-22-12-fr-embeddings", split="train", streaming=True) | |
| for doc in docs: | |
| docid = doc['id'] | |
| title = doc['title'] | |
| text = doc['text'] | |
| emb = doc['emb'] | |
| ``` | |
| ## Search | |
| A full search example: | |
| ```python | |
| #Run: pip install cohere datasets | |
| from datasets import load_dataset | |
| import torch | |
| import cohere | |
| co = cohere.Client(f"<<COHERE_API_KEY>>") # Add your cohere API key from www.cohere.com | |
| #Load at max 1000 documents + embeddings | |
| max_docs = 1000 | |
| docs_stream = load_dataset(f"Cohere/wikipedia-22-12-fr-embeddings", split="train", streaming=True) | |
| docs = [] | |
| doc_embeddings = [] | |
| for doc in docs_stream: | |
| docs.append(doc) | |
| doc_embeddings.append(doc['emb']) | |
| if len(docs) >= max_docs: | |
| break | |
| doc_embeddings = torch.tensor(doc_embeddings) | |
| query = 'Who founded Youtube' | |
| response = co.embed(texts=[query], model='multilingual-22-12') | |
| query_embedding = response.embeddings | |
| query_embedding = torch.tensor(query_embedding) | |
| # Compute dot score between query embedding and document embeddings | |
| dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1)) | |
| top_k = torch.topk(dot_scores, k=3) | |
| # Print results | |
| print("Query:", query) | |
| for doc_id in top_k.indices[0].tolist(): | |
| print(docs[doc_id]['title']) | |
| print(docs[doc_id]['text'], "\n") | |
| ``` | |
| ## Performance | |
| You can find performance on the MIRACL dataset (a semantic search evaluation dataset) here: [miracl-en-queries-22-12#performance](https://huggingface.co/datasets/Cohere/miracl-en-queries-22-12#performance) |