Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
720
720
mask
imagewidth (px)
720
720
case_id
stringclasses
10 values
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_156
21405_176
21405_176
21405_176
21405_176
21405_176
21405_176
21405_176
21405_176
21405_178
21405_178
21405_178
21405_178
21405_178
21405_178
21405_178
21405_182
21405_182
21405_182
21405_182
21405_182
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_187
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_192
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_188
21405_156
21405_156
21405_156
End of preview. Expand in Data Studio

PSU-MIPL AFB Bronchoscopy Dataset

Dataset Description

The PSU-MIPL AFB (Autofluorescence Bronchoscopy) dataset contains bronchoscopy images for lesion segmentation tasks. The dataset includes both lesion frames (with pathological tissue) and normal frames (healthy tissue).

  • Task: Binary segmentation (lesion vs. background)
  • Modality: Autofluorescence bronchoscopy
  • Format: JPG images with corresponding binary masks
  • Total samples: 685 images (208 lesion, 477 normal)

Dataset Structure

psu-mipl-afb/
β”œβ”€β”€ train_lesion/
β”‚   β”œβ”€β”€ images/      # 97 lesion images
β”‚   └── masks/       # 97 corresponding masks
β”œβ”€β”€ train_normal/
β”‚   β”œβ”€β”€ images/      # 223 normal images
β”‚   └── masks/       # 223 empty masks (background only)
β”œβ”€β”€ validation_lesion/
β”‚   β”œβ”€β”€ images/      # 58 lesion images
β”‚   └── masks/       # 58 corresponding masks
β”œβ”€β”€ validation_normal/
β”‚   β”œβ”€β”€ images/      # 139 normal images
β”‚   └── masks/       # 139 empty masks
β”œβ”€β”€ test_lesion/
β”‚   β”œβ”€β”€ images/      # 53 lesion images
β”‚   └── masks/       # 53 corresponding masks
└── test_normal/
    β”œβ”€β”€ images/      # 115 normal images
    └── masks/       # 115 empty masks

Data Splits

Split Lesion Normal Total
Train 97 223 320
Validation 58 139 197
Test 53 115 168
Total 208 477 685

Usage

Quick Start

from huggingface_hub import snapshot_download
from pathlib import Path
from PIL import Image

# Download dataset
dataset_path = snapshot_download(
    repo_id="Angelou0516/psu-mipl-afb",
    repo_type="dataset"
)

# Load a sample
img_path = Path(dataset_path) / "train_lesion" / "images" / "21405_156_21405_156_1780.jpg"
mask_path = Path(dataset_path) / "train_lesion" / "masks" / "21405_156_21405_156_1780.jpg"

image = Image.open(img_path).convert('RGB')
mask = Image.open(mask_path).convert('L')

Loading Lesion Samples Only

For SAM/SAM2 evaluation or tasks requiring non-empty masks:

from pathlib import Path
from PIL import Image
from huggingface_hub import snapshot_download

# Download dataset
dataset_path = Path(snapshot_download(
    repo_id="Angelou0516/psu-mipl-afb",
    repo_type="dataset"
))

# Load lesion samples from test split
split = "test"
images_dir = dataset_path / f"{split}_lesion" / "images"
masks_dir = dataset_path / f"{split}_lesion" / "masks"

samples = []
for img_path in sorted(images_dir.glob("*.jpg")):
    mask_path = masks_dir / img_path.name
    if mask_path.exists():
        samples.append({
            'image': Image.open(img_path).convert('RGB'),
            'mask': Image.open(mask_path).convert('L'),
            'filename': img_path.name
        })

print(f"Loaded {len(samples)} lesion samples")  # 53 samples

PyTorch Dataset Class

import torch
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
from PIL import Image
from huggingface_hub import snapshot_download

class AFBDataset(Dataset):
    def __init__(self, split='train', category=None, transform=None):
        # Download dataset
        dataset_path = Path(snapshot_download(
            repo_id="Angelou0516/psu-mipl-afb",
            repo_type="dataset"
        ))
        
        self.transform = transform
        self.samples = []
        
        # Determine which categories to load
        categories = [category] if category else ['lesion', 'normal']
        
        for cat in categories:
            images_dir = dataset_path / f"{split}_{cat}" / "images"
            masks_dir = dataset_path / f"{split}_{cat}" / "masks"
            
            for img_path in sorted(images_dir.glob("*.jpg")):
                mask_path = masks_dir / img_path.name
                if mask_path.exists():
                    self.samples.append({
                        'image_path': img_path,
                        'mask_path': mask_path,
                        'category': cat
                    })
    
    def __len__(self):
        return len(self.samples)
    
    def __getitem__(self, idx):
        sample = self.samples[idx]
        image = Image.open(sample['image_path']).convert('RGB')
        mask = Image.open(sample['mask_path']).convert('L')
        
        if self.transform:
            image = self.transform(image)
            mask = self.transform(mask)
        
        return {
            'image': image,
            'mask': mask,
            'category': sample['category']
        }

# Example usage
dataset = AFBDataset(split='train', category='lesion')
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)

Balanced Sampling (Equal Lesion/Normal per Batch)

import numpy as np
from torch.utils.data import Sampler

class BalancedSampler(Sampler):
    def __init__(self, dataset, batch_size=8, shuffle=True, seed=42):
        if batch_size % 2 != 0:
            raise ValueError("batch_size must be even")
        
        self.batch_size = batch_size
        self.samples_per_category = batch_size // 2
        self.shuffle = shuffle
        self.seed = seed
        
        # Get indices for each category
        self.lesion_indices = [
            i for i, s in enumerate(dataset.samples)
            if s['category'] == 'lesion'
        ]
        self.normal_indices = [
            i for i, s in enumerate(dataset.samples)
            if s['category'] == 'normal'
        ]
        
        self.num_batches = min(
            len(self.lesion_indices) // self.samples_per_category,
            len(self.normal_indices) // self.samples_per_category
        )
    
    def __iter__(self):
        rng = np.random.RandomState(self.seed)
        
        if self.shuffle:
            lesion_shuffled = rng.permutation(self.lesion_indices).tolist()
            normal_shuffled = rng.permutation(self.normal_indices).tolist()
        else:
            lesion_shuffled = self.lesion_indices.copy()
            normal_shuffled = self.normal_indices.copy()
        
        batch_indices = []
        for i in range(self.num_batches):
            lesion_batch = lesion_shuffled[
                i * self.samples_per_category:(i + 1) * self.samples_per_category
            ]
            normal_batch = normal_shuffled[
                i * self.samples_per_category:(i + 1) * self.samples_per_category
            ]
            
            batch = lesion_batch + normal_batch
            if self.shuffle:
                rng.shuffle(batch)
            
            batch_indices.extend(batch)
        
        return iter(batch_indices)
    
    def __len__(self):
        return self.num_batches * self.batch_size

# Example usage
dataset = AFBDataset(split='train', category=None)  # Load both
sampler = BalancedSampler(dataset, batch_size=8, shuffle=True)
dataloader = DataLoader(dataset, batch_size=8, sampler=sampler)

for batch in dataloader:
    # Each batch has 4 lesion + 4 normal samples
    images = batch['image']
    masks = batch['mask']
    categories = batch['category']

Important Notes

Lesion vs Normal Frames

  • Lesion frames (208 total): Contain pathological tissue with segmentation masks
  • Normal frames (477 total): Contain healthy tissue with empty masks (background only)

Recommended Usage

For SAM/SAM2 Evaluation:

  • Use only lesion samples (category='lesion')
  • Normal frames have empty masks and will cause errors with prompt-based models

For Training:

  • Use both lesion and normal samples (category=None)
  • Use balanced sampling to ensure equal representation
  • Helps models distinguish between healthy and pathological tissue

Citation

If you use this dataset, please cite:

@article{chang2024esfpnet,
  title={ESFPNet: Efficient Stage-Wise Feature Pyramid on Mix Transformer for Deep Learning-Based Cancer Analysis in Endoscopic Video},
  author={Chang, Qi and Ahmad, Danish and Toth, Jennifer and Bascom, Rebecca and Higgins, William E},
  journal={Journal of Imaging},
  volume={10},
  number={8},
  pages={191},
  year={2024},
  publisher={MDPI}
}

License

CC-BY-4.0

Links

Downloads last month
17