vit-base-patch32-384-finetuned-humid-classes-17
This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1444
- Accuracy: 0.9516
- F1 Macro: 0.9280
- Precision Macro: 0.9727
- Recall Macro: 0.9057
- Precision Dry: 1.0
- Recall Dry: 1.0
- F1 Dry: 1.0
- Precision Firm: 1.0
- Recall Firm: 1.0
- F1 Firm: 1.0
- Precision Humid: 1.0
- Recall Humid: 0.6
- F1 Humid: 0.75
- Precision Lump: 0.8636
- Recall Lump: 1.0
- F1 Lump: 0.9268
- Precision Rockies: 1.0
- Recall Rockies: 0.9286
- F1 Rockies: 0.9630
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Precision Dry | Recall Dry | F1 Dry | Precision Firm | Recall Firm | F1 Firm | Precision Humid | Recall Humid | F1 Humid | Precision Lump | Recall Lump | F1 Lump | Precision Rockies | Recall Rockies | F1 Rockies |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 5 | 1.3844 | 0.4677 | 0.3495 | 0.4783 | 0.3809 | 0.6667 | 0.6 | 0.6316 | 1.0 | 0.2857 | 0.4444 | 0.0 | 0.0 | 0.0 | 0.3913 | 0.9474 | 0.5538 | 0.3333 | 0.0714 | 0.1176 |
| 1.3541 | 2.0 | 10 | 1.1354 | 0.6129 | 0.4513 | 0.4503 | 0.5095 | 1.0 | 0.6 | 0.75 | 0.7778 | 1.0 | 0.875 | 0.0 | 0.0 | 0.0 | 0.4737 | 0.9474 | 0.6316 | 0.0 | 0.0 | 0.0 |
| 1.3541 | 3.0 | 15 | 0.6608 | 0.8710 | 0.7994 | 0.9307 | 0.7866 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.2 | 0.3333 | 0.72 | 0.9474 | 0.8182 | 1.0 | 0.7857 | 0.88 |
| 0.6379 | 4.0 | 20 | 0.3818 | 0.9032 | 0.8630 | 0.952 | 0.8371 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.76 | 1.0 | 0.8636 | 1.0 | 0.7857 | 0.88 |
| 0.6379 | 5.0 | 25 | 0.3229 | 0.9032 | 0.8630 | 0.952 | 0.8371 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.76 | 1.0 | 0.8636 | 1.0 | 0.7857 | 0.88 |
| 0.1806 | 6.0 | 30 | 0.2452 | 0.9194 | 0.8756 | 0.9583 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.7917 | 1.0 | 0.8837 | 1.0 | 0.8571 | 0.9231 |
| 0.1806 | 7.0 | 35 | 0.1912 | 0.9194 | 0.9091 | 0.8974 | 0.9436 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.625 | 1.0 | 0.7692 | 1.0 | 0.7895 | 0.8824 | 0.9286 | 0.9286 | 0.9286 |
| 0.109 | 8.0 | 40 | 0.2545 | 0.9032 | 0.8630 | 0.952 | 0.8371 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.76 | 1.0 | 0.8636 | 1.0 | 0.7857 | 0.88 |
| 0.109 | 9.0 | 45 | 0.1644 | 0.9355 | 0.9293 | 0.9162 | 0.9579 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.7143 | 1.0 | 0.8333 | 1.0 | 0.7895 | 0.8824 | 0.9333 | 1.0 | 0.9655 |
| 0.046 | 10.0 | 50 | 0.1444 | 0.9516 | 0.9280 | 0.9727 | 0.9057 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6 | 0.75 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.9286 | 0.9630 |
| 0.046 | 11.0 | 55 | 0.1762 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0106 | 12.0 | 60 | 0.1682 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0106 | 13.0 | 65 | 0.1277 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0045 | 14.0 | 70 | 0.2338 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0045 | 15.0 | 75 | 0.1420 | 0.9355 | 0.9147 | 0.9133 | 0.9209 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 | 0.7273 | 0.9 | 0.9474 | 0.9231 | 1.0 | 0.8571 | 0.9231 |
| 0.0026 | 16.0 | 80 | 0.1907 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0026 | 17.0 | 85 | 0.2488 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0034 | 18.0 | 90 | 0.1712 | 0.9194 | 0.8939 | 0.8943 | 0.9066 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5714 | 0.8 | 0.6667 | 0.9 | 0.9474 | 0.9231 | 1.0 | 0.7857 | 0.88 |
| 0.0034 | 19.0 | 95 | 0.1327 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.003 | 20.0 | 100 | 0.3557 | 0.9355 | 0.8878 | 0.9652 | 0.8657 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.9286 | 0.9630 |
| 0.003 | 21.0 | 105 | 0.2862 | 0.9355 | 0.8878 | 0.9652 | 0.8657 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.9286 | 0.9630 |
| 0.0015 | 22.0 | 110 | 0.0981 | 0.9516 | 0.9159 | 0.9310 | 0.9057 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.9286 | 0.9630 |
| 0.0015 | 23.0 | 115 | 0.1134 | 0.9516 | 0.9353 | 0.925 | 0.9647 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.625 | 1.0 | 0.7692 | 1.0 | 0.8947 | 0.9444 | 1.0 | 0.9286 | 0.9630 |
| 0.0014 | 24.0 | 120 | 0.1602 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0014 | 25.0 | 125 | 0.3842 | 0.9194 | 0.8756 | 0.9583 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.7917 | 1.0 | 0.8837 | 1.0 | 0.8571 | 0.9231 |
| 0.0012 | 26.0 | 130 | 0.3105 | 0.9194 | 0.8756 | 0.9583 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4 | 0.5714 | 0.7917 | 1.0 | 0.8837 | 1.0 | 0.8571 | 0.9231 |
| 0.0012 | 27.0 | 135 | 0.1442 | 0.9516 | 0.9280 | 0.9727 | 0.9057 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6 | 0.75 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.9286 | 0.9630 |
| 0.0009 | 28.0 | 140 | 0.0838 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0009 | 29.0 | 145 | 0.0709 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0007 | 30.0 | 150 | 0.0723 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0007 | 31.0 | 155 | 0.0834 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0006 | 32.0 | 160 | 0.1004 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0006 | 33.0 | 165 | 0.1159 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0006 | 34.0 | 170 | 0.1305 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0006 | 35.0 | 175 | 0.1421 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 36.0 | 180 | 0.1511 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 37.0 | 185 | 0.1574 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 38.0 | 190 | 0.1620 | 0.9355 | 0.9033 | 0.9227 | 0.8914 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.75 | 0.6 | 0.6667 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 39.0 | 195 | 0.1655 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 40.0 | 200 | 0.1684 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 41.0 | 205 | 0.1693 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 42.0 | 210 | 0.1701 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 43.0 | 215 | 0.1696 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 44.0 | 220 | 0.1688 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 45.0 | 225 | 0.1684 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0004 | 46.0 | 230 | 0.1686 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0004 | 47.0 | 235 | 0.1688 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0004 | 48.0 | 240 | 0.1688 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0004 | 49.0 | 245 | 0.1689 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
| 0.0005 | 50.0 | 250 | 0.1688 | 0.9194 | 0.8656 | 0.8986 | 0.8514 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.4 | 0.5 | 0.8261 | 1.0 | 0.9048 | 1.0 | 0.8571 | 0.9231 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 96
Model tree for dacunaq/vit-base-patch32-384-finetuned-humid-classes-17
Base model
google/vit-base-patch32-384Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.952