vit-base-patch32-384-finetuned-humid-classes-17

This model is a fine-tuned version of google/vit-base-patch32-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1444
  • Accuracy: 0.9516
  • F1 Macro: 0.9280
  • Precision Macro: 0.9727
  • Recall Macro: 0.9057
  • Precision Dry: 1.0
  • Recall Dry: 1.0
  • F1 Dry: 1.0
  • Precision Firm: 1.0
  • Recall Firm: 1.0
  • F1 Firm: 1.0
  • Precision Humid: 1.0
  • Recall Humid: 0.6
  • F1 Humid: 0.75
  • Precision Lump: 0.8636
  • Recall Lump: 1.0
  • F1 Lump: 0.9268
  • Precision Rockies: 1.0
  • Recall Rockies: 0.9286
  • F1 Rockies: 0.9630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro Precision Dry Recall Dry F1 Dry Precision Firm Recall Firm F1 Firm Precision Humid Recall Humid F1 Humid Precision Lump Recall Lump F1 Lump Precision Rockies Recall Rockies F1 Rockies
No log 1.0 5 1.3844 0.4677 0.3495 0.4783 0.3809 0.6667 0.6 0.6316 1.0 0.2857 0.4444 0.0 0.0 0.0 0.3913 0.9474 0.5538 0.3333 0.0714 0.1176
1.3541 2.0 10 1.1354 0.6129 0.4513 0.4503 0.5095 1.0 0.6 0.75 0.7778 1.0 0.875 0.0 0.0 0.0 0.4737 0.9474 0.6316 0.0 0.0 0.0
1.3541 3.0 15 0.6608 0.8710 0.7994 0.9307 0.7866 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.2 0.3333 0.72 0.9474 0.8182 1.0 0.7857 0.88
0.6379 4.0 20 0.3818 0.9032 0.8630 0.952 0.8371 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.76 1.0 0.8636 1.0 0.7857 0.88
0.6379 5.0 25 0.3229 0.9032 0.8630 0.952 0.8371 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.76 1.0 0.8636 1.0 0.7857 0.88
0.1806 6.0 30 0.2452 0.9194 0.8756 0.9583 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.7917 1.0 0.8837 1.0 0.8571 0.9231
0.1806 7.0 35 0.1912 0.9194 0.9091 0.8974 0.9436 1.0 1.0 1.0 0.9333 1.0 0.9655 0.625 1.0 0.7692 1.0 0.7895 0.8824 0.9286 0.9286 0.9286
0.109 8.0 40 0.2545 0.9032 0.8630 0.952 0.8371 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.76 1.0 0.8636 1.0 0.7857 0.88
0.109 9.0 45 0.1644 0.9355 0.9293 0.9162 0.9579 1.0 1.0 1.0 0.9333 1.0 0.9655 0.7143 1.0 0.8333 1.0 0.7895 0.8824 0.9333 1.0 0.9655
0.046 10.0 50 0.1444 0.9516 0.9280 0.9727 0.9057 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.75 0.8636 1.0 0.9268 1.0 0.9286 0.9630
0.046 11.0 55 0.1762 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0106 12.0 60 0.1682 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0106 13.0 65 0.1277 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0045 14.0 70 0.2338 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0045 15.0 75 0.1420 0.9355 0.9147 0.9133 0.9209 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8 0.7273 0.9 0.9474 0.9231 1.0 0.8571 0.9231
0.0026 16.0 80 0.1907 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0026 17.0 85 0.2488 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0034 18.0 90 0.1712 0.9194 0.8939 0.8943 0.9066 1.0 1.0 1.0 1.0 1.0 1.0 0.5714 0.8 0.6667 0.9 0.9474 0.9231 1.0 0.7857 0.88
0.0034 19.0 95 0.1327 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.003 20.0 100 0.3557 0.9355 0.8878 0.9652 0.8657 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.8261 1.0 0.9048 1.0 0.9286 0.9630
0.003 21.0 105 0.2862 0.9355 0.8878 0.9652 0.8657 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.8261 1.0 0.9048 1.0 0.9286 0.9630
0.0015 22.0 110 0.0981 0.9516 0.9159 0.9310 0.9057 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.9048 1.0 0.95 1.0 0.9286 0.9630
0.0015 23.0 115 0.1134 0.9516 0.9353 0.925 0.9647 1.0 1.0 1.0 1.0 1.0 1.0 0.625 1.0 0.7692 1.0 0.8947 0.9444 1.0 0.9286 0.9630
0.0014 24.0 120 0.1602 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0014 25.0 125 0.3842 0.9194 0.8756 0.9583 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.7917 1.0 0.8837 1.0 0.8571 0.9231
0.0012 26.0 130 0.3105 0.9194 0.8756 0.9583 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.5714 0.7917 1.0 0.8837 1.0 0.8571 0.9231
0.0012 27.0 135 0.1442 0.9516 0.9280 0.9727 0.9057 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.75 0.8636 1.0 0.9268 1.0 0.9286 0.9630
0.0009 28.0 140 0.0838 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0009 29.0 145 0.0709 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0007 30.0 150 0.0723 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0007 31.0 155 0.0834 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0006 32.0 160 0.1004 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0006 33.0 165 0.1159 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0006 34.0 170 0.1305 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0006 35.0 175 0.1421 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0005 36.0 180 0.1511 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0005 37.0 185 0.1574 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0005 38.0 190 0.1620 0.9355 0.9033 0.9227 0.8914 1.0 1.0 1.0 1.0 1.0 1.0 0.75 0.6 0.6667 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0005 39.0 195 0.1655 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 40.0 200 0.1684 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 41.0 205 0.1693 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 42.0 210 0.1701 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 43.0 215 0.1696 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 44.0 220 0.1688 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 45.0 225 0.1684 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0004 46.0 230 0.1686 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0004 47.0 235 0.1688 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0004 48.0 240 0.1688 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0004 49.0 245 0.1689 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231
0.0005 50.0 250 0.1688 0.9194 0.8656 0.8986 0.8514 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.4 0.5 0.8261 1.0 0.9048 1.0 0.8571 0.9231

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
96
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dacunaq/vit-base-patch32-384-finetuned-humid-classes-17

Finetuned
(27)
this model

Evaluation results