square_run_with_actual_16_batch_size

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2489
  • F1 Macro: 0.5325
  • F1 Micro: 0.6212
  • F1 Weighted: 0.6021
  • Precision Macro: 0.5262
  • Precision Micro: 0.6212
  • Precision Weighted: 0.5980
  • Recall Macro: 0.5529
  • Recall Micro: 0.6212
  • Recall Weighted: 0.6212
  • Accuracy: 0.6212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9666 1.0 15 1.9122 0.0522 0.1818 0.0701 0.0544 0.1818 0.0752 0.1367 0.1818 0.1818 0.1818
1.3456 2.0 30 1.8989 0.1141 0.2045 0.1357 0.0978 0.2045 0.1212 0.1792 0.2045 0.2045 0.2045
1.8934 3.0 45 1.8013 0.1472 0.25 0.1719 0.2585 0.25 0.3007 0.1956 0.25 0.25 0.25
1.0877 4.0 60 1.5598 0.3297 0.3864 0.3581 0.3466 0.3864 0.3737 0.3502 0.3864 0.3864 0.3864
1.2233 5.0 75 1.4987 0.3442 0.4318 0.3877 0.4069 0.4318 0.4401 0.3723 0.4318 0.4318 0.4318
1.0714 6.0 90 1.4548 0.3909 0.4848 0.4447 0.4532 0.4848 0.5043 0.4156 0.4848 0.4848 0.4848
1.0008 7.0 105 1.3781 0.4699 0.5455 0.5277 0.4927 0.5455 0.5384 0.4728 0.5455 0.5455 0.5455
0.8822 8.0 120 1.4939 0.4440 0.5076 0.4959 0.4501 0.5076 0.5066 0.4594 0.5076 0.5076 0.5076
0.6024 9.0 135 1.2516 0.4922 0.5682 0.5559 0.4841 0.5682 0.5477 0.5037 0.5682 0.5682 0.5682
0.2719 10.0 150 1.4020 0.4582 0.5455 0.5177 0.4610 0.5455 0.5195 0.4821 0.5455 0.5455 0.5455
0.2165 11.0 165 1.4121 0.4974 0.5758 0.5601 0.4906 0.5758 0.5530 0.5121 0.5758 0.5758 0.5758
0.2752 12.0 180 1.4315 0.5750 0.5909 0.5923 0.6618 0.5909 0.6319 0.5545 0.5909 0.5909 0.5909
0.4386 13.0 195 1.4823 0.5170 0.5606 0.5607 0.5515 0.5606 0.5955 0.5150 0.5606 0.5606 0.5606
0.2152 14.0 210 1.4962 0.5371 0.5833 0.5795 0.5796 0.5833 0.6003 0.5334 0.5833 0.5833 0.5833
0.2021 15.0 225 1.5027 0.4698 0.5606 0.5383 0.4781 0.5606 0.5353 0.4829 0.5606 0.5606 0.5606
0.1147 16.0 240 1.5977 0.4771 0.5606 0.5447 0.4901 0.5606 0.5638 0.4976 0.5606 0.5606 0.5606
0.0648 17.0 255 1.6214 0.4894 0.5682 0.5551 0.4829 0.5682 0.5474 0.5009 0.5682 0.5682 0.5682
0.0958 18.0 270 1.6267 0.4911 0.5379 0.5332 0.5140 0.5379 0.5539 0.4899 0.5379 0.5379 0.5379
0.0468 19.0 285 1.6385 0.5462 0.6061 0.5975 0.5685 0.6061 0.6104 0.5458 0.6061 0.6061 0.6061
0.0344 20.0 300 1.7048 0.5815 0.6136 0.6076 0.6000 0.6136 0.6225 0.5844 0.6136 0.6136 0.6136
0.1686 21.0 315 1.8050 0.5545 0.6061 0.5975 0.5939 0.6061 0.6116 0.5538 0.6061 0.6061 0.6061
0.044 22.0 330 1.7228 0.5362 0.5909 0.5779 0.5746 0.5909 0.5894 0.5380 0.5909 0.5909 0.5909
0.0185 23.0 345 1.9158 0.5024 0.6061 0.5756 0.5249 0.6061 0.6034 0.5363 0.6061 0.6061 0.6061
0.0065 24.0 360 1.7524 0.5881 0.6212 0.6111 0.6132 0.6212 0.6234 0.5850 0.6212 0.6212 0.6212
0.1169 25.0 375 1.7258 0.5801 0.6364 0.6246 0.6131 0.6364 0.6282 0.5780 0.6364 0.6364 0.6364
0.0092 26.0 390 1.8467 0.5427 0.5985 0.5849 0.5862 0.5985 0.5954 0.5379 0.5985 0.5985 0.5985
0.0286 27.0 405 1.8018 0.5670 0.6212 0.6108 0.6027 0.6212 0.6171 0.5636 0.6212 0.6212 0.6212
0.0263 28.0 420 1.8319 0.5621 0.6212 0.6079 0.5969 0.6212 0.6121 0.5598 0.6212 0.6212 0.6212
0.0049 29.0 435 1.8276 0.5637 0.6136 0.6066 0.5962 0.6136 0.6099 0.5574 0.6136 0.6136 0.6136
0.0039 30.0 450 1.8631 0.5480 0.5985 0.5900 0.5879 0.5985 0.5988 0.5405 0.5985 0.5985 0.5985
0.0636 31.0 465 1.8579 0.5697 0.6212 0.6118 0.6075 0.6212 0.6181 0.5629 0.6212 0.6212 0.6212
0.0023 32.0 480 1.8398 0.5773 0.6288 0.6204 0.6144 0.6288 0.6265 0.57 0.6288 0.6288 0.6288
0.0028 32.6897 490 1.8415 0.5773 0.6288 0.6204 0.6144 0.6288 0.6265 0.57 0.6288 0.6288 0.6288

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for corranm/square_run_with_actual_16_batch_size

Finetuned
(938)
this model

Evaluation results