square_run_with_actual_16_batch_size
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2489
- F1 Macro: 0.5325
- F1 Micro: 0.6212
- F1 Weighted: 0.6021
- Precision Macro: 0.5262
- Precision Micro: 0.6212
- Precision Weighted: 0.5980
- Recall Macro: 0.5529
- Recall Micro: 0.6212
- Recall Weighted: 0.6212
- Accuracy: 0.6212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 35
Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.9666 | 1.0 | 15 | 1.9122 | 0.0522 | 0.1818 | 0.0701 | 0.0544 | 0.1818 | 0.0752 | 0.1367 | 0.1818 | 0.1818 | 0.1818 |
| 1.3456 | 2.0 | 30 | 1.8989 | 0.1141 | 0.2045 | 0.1357 | 0.0978 | 0.2045 | 0.1212 | 0.1792 | 0.2045 | 0.2045 | 0.2045 |
| 1.8934 | 3.0 | 45 | 1.8013 | 0.1472 | 0.25 | 0.1719 | 0.2585 | 0.25 | 0.3007 | 0.1956 | 0.25 | 0.25 | 0.25 |
| 1.0877 | 4.0 | 60 | 1.5598 | 0.3297 | 0.3864 | 0.3581 | 0.3466 | 0.3864 | 0.3737 | 0.3502 | 0.3864 | 0.3864 | 0.3864 |
| 1.2233 | 5.0 | 75 | 1.4987 | 0.3442 | 0.4318 | 0.3877 | 0.4069 | 0.4318 | 0.4401 | 0.3723 | 0.4318 | 0.4318 | 0.4318 |
| 1.0714 | 6.0 | 90 | 1.4548 | 0.3909 | 0.4848 | 0.4447 | 0.4532 | 0.4848 | 0.5043 | 0.4156 | 0.4848 | 0.4848 | 0.4848 |
| 1.0008 | 7.0 | 105 | 1.3781 | 0.4699 | 0.5455 | 0.5277 | 0.4927 | 0.5455 | 0.5384 | 0.4728 | 0.5455 | 0.5455 | 0.5455 |
| 0.8822 | 8.0 | 120 | 1.4939 | 0.4440 | 0.5076 | 0.4959 | 0.4501 | 0.5076 | 0.5066 | 0.4594 | 0.5076 | 0.5076 | 0.5076 |
| 0.6024 | 9.0 | 135 | 1.2516 | 0.4922 | 0.5682 | 0.5559 | 0.4841 | 0.5682 | 0.5477 | 0.5037 | 0.5682 | 0.5682 | 0.5682 |
| 0.2719 | 10.0 | 150 | 1.4020 | 0.4582 | 0.5455 | 0.5177 | 0.4610 | 0.5455 | 0.5195 | 0.4821 | 0.5455 | 0.5455 | 0.5455 |
| 0.2165 | 11.0 | 165 | 1.4121 | 0.4974 | 0.5758 | 0.5601 | 0.4906 | 0.5758 | 0.5530 | 0.5121 | 0.5758 | 0.5758 | 0.5758 |
| 0.2752 | 12.0 | 180 | 1.4315 | 0.5750 | 0.5909 | 0.5923 | 0.6618 | 0.5909 | 0.6319 | 0.5545 | 0.5909 | 0.5909 | 0.5909 |
| 0.4386 | 13.0 | 195 | 1.4823 | 0.5170 | 0.5606 | 0.5607 | 0.5515 | 0.5606 | 0.5955 | 0.5150 | 0.5606 | 0.5606 | 0.5606 |
| 0.2152 | 14.0 | 210 | 1.4962 | 0.5371 | 0.5833 | 0.5795 | 0.5796 | 0.5833 | 0.6003 | 0.5334 | 0.5833 | 0.5833 | 0.5833 |
| 0.2021 | 15.0 | 225 | 1.5027 | 0.4698 | 0.5606 | 0.5383 | 0.4781 | 0.5606 | 0.5353 | 0.4829 | 0.5606 | 0.5606 | 0.5606 |
| 0.1147 | 16.0 | 240 | 1.5977 | 0.4771 | 0.5606 | 0.5447 | 0.4901 | 0.5606 | 0.5638 | 0.4976 | 0.5606 | 0.5606 | 0.5606 |
| 0.0648 | 17.0 | 255 | 1.6214 | 0.4894 | 0.5682 | 0.5551 | 0.4829 | 0.5682 | 0.5474 | 0.5009 | 0.5682 | 0.5682 | 0.5682 |
| 0.0958 | 18.0 | 270 | 1.6267 | 0.4911 | 0.5379 | 0.5332 | 0.5140 | 0.5379 | 0.5539 | 0.4899 | 0.5379 | 0.5379 | 0.5379 |
| 0.0468 | 19.0 | 285 | 1.6385 | 0.5462 | 0.6061 | 0.5975 | 0.5685 | 0.6061 | 0.6104 | 0.5458 | 0.6061 | 0.6061 | 0.6061 |
| 0.0344 | 20.0 | 300 | 1.7048 | 0.5815 | 0.6136 | 0.6076 | 0.6000 | 0.6136 | 0.6225 | 0.5844 | 0.6136 | 0.6136 | 0.6136 |
| 0.1686 | 21.0 | 315 | 1.8050 | 0.5545 | 0.6061 | 0.5975 | 0.5939 | 0.6061 | 0.6116 | 0.5538 | 0.6061 | 0.6061 | 0.6061 |
| 0.044 | 22.0 | 330 | 1.7228 | 0.5362 | 0.5909 | 0.5779 | 0.5746 | 0.5909 | 0.5894 | 0.5380 | 0.5909 | 0.5909 | 0.5909 |
| 0.0185 | 23.0 | 345 | 1.9158 | 0.5024 | 0.6061 | 0.5756 | 0.5249 | 0.6061 | 0.6034 | 0.5363 | 0.6061 | 0.6061 | 0.6061 |
| 0.0065 | 24.0 | 360 | 1.7524 | 0.5881 | 0.6212 | 0.6111 | 0.6132 | 0.6212 | 0.6234 | 0.5850 | 0.6212 | 0.6212 | 0.6212 |
| 0.1169 | 25.0 | 375 | 1.7258 | 0.5801 | 0.6364 | 0.6246 | 0.6131 | 0.6364 | 0.6282 | 0.5780 | 0.6364 | 0.6364 | 0.6364 |
| 0.0092 | 26.0 | 390 | 1.8467 | 0.5427 | 0.5985 | 0.5849 | 0.5862 | 0.5985 | 0.5954 | 0.5379 | 0.5985 | 0.5985 | 0.5985 |
| 0.0286 | 27.0 | 405 | 1.8018 | 0.5670 | 0.6212 | 0.6108 | 0.6027 | 0.6212 | 0.6171 | 0.5636 | 0.6212 | 0.6212 | 0.6212 |
| 0.0263 | 28.0 | 420 | 1.8319 | 0.5621 | 0.6212 | 0.6079 | 0.5969 | 0.6212 | 0.6121 | 0.5598 | 0.6212 | 0.6212 | 0.6212 |
| 0.0049 | 29.0 | 435 | 1.8276 | 0.5637 | 0.6136 | 0.6066 | 0.5962 | 0.6136 | 0.6099 | 0.5574 | 0.6136 | 0.6136 | 0.6136 |
| 0.0039 | 30.0 | 450 | 1.8631 | 0.5480 | 0.5985 | 0.5900 | 0.5879 | 0.5985 | 0.5988 | 0.5405 | 0.5985 | 0.5985 | 0.5985 |
| 0.0636 | 31.0 | 465 | 1.8579 | 0.5697 | 0.6212 | 0.6118 | 0.6075 | 0.6212 | 0.6181 | 0.5629 | 0.6212 | 0.6212 | 0.6212 |
| 0.0023 | 32.0 | 480 | 1.8398 | 0.5773 | 0.6288 | 0.6204 | 0.6144 | 0.6288 | 0.6265 | 0.57 | 0.6288 | 0.6288 | 0.6288 |
| 0.0028 | 32.6897 | 490 | 1.8415 | 0.5773 | 0.6288 | 0.6204 | 0.6144 | 0.6288 | 0.6265 | 0.57 | 0.6288 | 0.6288 | 0.6288 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Model tree for corranm/square_run_with_actual_16_batch_size
Base model
google/vit-base-patch16-224