square_run_with_16_batch_size

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4457
  • F1 Macro: 0.4685
  • F1 Micro: 0.5455
  • F1 Weighted: 0.5242
  • Precision Macro: 0.5341
  • Precision Micro: 0.5455
  • Precision Weighted: 0.5870
  • Recall Macro: 0.4829
  • Recall Micro: 0.5455
  • Recall Weighted: 0.5455
  • Accuracy: 0.5455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 35

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9976 1.0 29 1.9107 0.0915 0.2045 0.1209 0.0793 0.2045 0.1019 0.1535 0.2045 0.2045 0.2045
1.7575 2.0 58 1.8877 0.1474 0.2348 0.1805 0.1704 0.2348 0.2163 0.1989 0.2348 0.2348 0.2348
1.8336 3.0 87 1.7319 0.1659 0.3182 0.2117 0.1611 0.3182 0.2133 0.2586 0.3182 0.3182 0.3182
1.452 4.0 116 1.5316 0.3336 0.4167 0.3752 0.3518 0.4167 0.3903 0.3682 0.4167 0.4167 0.4167
1.2545 5.0 145 1.4192 0.3999 0.4848 0.4447 0.4601 0.4848 0.5021 0.4318 0.4848 0.4848 0.4848
1.6479 6.0 174 1.3642 0.4649 0.5455 0.5265 0.5072 0.5455 0.5559 0.4750 0.5455 0.5455 0.5455
1.301 7.0 203 1.3015 0.4178 0.5303 0.4735 0.4090 0.5303 0.4503 0.4535 0.5303 0.5303 0.5303
0.9006 8.0 232 1.4861 0.4234 0.4924 0.4699 0.4586 0.4924 0.5286 0.4621 0.4924 0.4924 0.4924
0.4134 9.0 261 1.2101 0.4852 0.5833 0.5545 0.5427 0.5833 0.5894 0.5010 0.5833 0.5833 0.5833
0.9532 10.0 290 1.3783 0.4577 0.5682 0.5204 0.4557 0.5682 0.5160 0.4972 0.5682 0.5682 0.5682
0.4521 11.0 319 1.3602 0.5266 0.6136 0.5923 0.5296 0.6136 0.5907 0.5403 0.6136 0.6136 0.6136
0.633 12.0 348 1.4293 0.5032 0.5833 0.5727 0.4969 0.5833 0.5674 0.5140 0.5833 0.5833 0.5833
0.4268 13.0 377 1.4388 0.5031 0.5833 0.5676 0.5543 0.5833 0.6189 0.5124 0.5833 0.5833 0.5833
0.2857 14.0 406 1.6012 0.5071 0.5833 0.5676 0.5209 0.5833 0.5879 0.5211 0.5833 0.5833 0.5833
0.2606 15.0 435 1.5817 0.5579 0.6136 0.6109 0.5657 0.6136 0.6178 0.5590 0.6136 0.6136 0.6136
0.2028 16.0 464 1.8048 0.4526 0.5227 0.5112 0.4703 0.5227 0.5378 0.4668 0.5227 0.5227 0.5227
0.3251 17.0 493 1.6340 0.4942 0.5833 0.5625 0.5049 0.5833 0.5631 0.5031 0.5833 0.5833 0.5833
0.0369 18.0 522 1.5847 0.5860 0.6439 0.6349 0.6267 0.6439 0.6476 0.5824 0.6439 0.6439 0.6439
0.1133 19.0 551 1.5825 0.5457 0.6288 0.6157 0.5377 0.6288 0.6111 0.5615 0.6288 0.6288 0.6288
0.0457 20.0 580 1.7253 0.5258 0.6136 0.5938 0.5229 0.6136 0.5854 0.5391 0.6136 0.6136 0.6136
0.1109 21.0 609 1.7898 0.5708 0.6212 0.6154 0.6150 0.6212 0.6283 0.5613 0.6212 0.6212 0.6212
0.046 22.0 638 1.7368 0.5656 0.6136 0.6029 0.6021 0.6136 0.6103 0.5615 0.6136 0.6136 0.6136
0.0553 23.0 667 2.2478 0.4822 0.5682 0.5430 0.4851 0.5682 0.5380 0.4975 0.5682 0.5682 0.5682
0.0047 24.0 696 2.1705 0.5133 0.5909 0.5750 0.5158 0.5909 0.5716 0.5220 0.5909 0.5909 0.5909
0.0104 25.0 725 2.2669 0.4950 0.5833 0.5622 0.5035 0.5833 0.5609 0.5038 0.5833 0.5833 0.5833
0.0287 26.0 754 2.0390 0.5267 0.6061 0.5935 0.5265 0.6061 0.5898 0.5346 0.6061 0.6061 0.6061
0.0212 27.0 783 2.1345 0.5344 0.6136 0.6005 0.5308 0.6136 0.5946 0.5449 0.6136 0.6136 0.6136
0.0221 28.0 812 2.1555 0.5607 0.6136 0.6035 0.5953 0.6136 0.6107 0.5583 0.6136 0.6136 0.6136
0.001 29.0 841 2.1102 0.5833 0.6364 0.6289 0.6172 0.6364 0.6353 0.5789 0.6364 0.6364 0.6364
0.0045 30.0 870 2.0669 0.5862 0.6364 0.6290 0.6164 0.6364 0.6326 0.5831 0.6364 0.6364 0.6364
0.0021 31.0 899 2.1442 0.5833 0.6364 0.6282 0.6165 0.6364 0.6330 0.5789 0.6364 0.6364 0.6364
0.0014 32.0 928 2.1435 0.5616 0.6136 0.6049 0.5957 0.6136 0.6099 0.5569 0.6136 0.6136 0.6136
0.0016 33.0 957 2.1279 0.5621 0.6136 0.6047 0.5966 0.6136 0.6093 0.5569 0.6136 0.6136 0.6136
0.0008 34.0 986 2.1310 0.5691 0.6212 0.6127 0.6030 0.6212 0.6170 0.5641 0.6212 0.6212 0.6212
0.0006 35.0 1015 2.1338 0.5690 0.6212 0.6130 0.6026 0.6212 0.6176 0.5641 0.6212 0.6212 0.6212

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for corranm/square_run_with_16_batch_size

Finetuned
(935)
this model

Evaluation results