smolvlm-mmocr-sft

This model is a fine-tuned version of HuggingFaceTB/SmolVLM-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.7936 0.0138 20 0.8587
0.7632 0.0275 40 0.8587
0.7891 0.0413 60 0.8584
0.7804 0.0551 80 0.8581
0.802 0.0689 100 0.8572
0.7793 0.0826 120 0.8562
0.7857 0.0964 140 0.8546
0.7788 0.1102 160 0.8524
0.7979 0.1240 180 0.8498
0.78 0.1377 200 0.8459
0.7597 0.1515 220 0.8410
0.7325 0.1653 240 0.8366
0.761 0.1791 260 0.8316
0.7802 0.1928 280 0.8265
0.7239 0.2066 300 0.8217
0.7196 0.2204 320 0.8176
0.7355 0.2342 340 0.8137
0.72 0.2479 360 0.8097
0.7521 0.2617 380 0.8061
0.725 0.2755 400 0.8030
0.7314 0.2893 420 0.8001
0.7148 0.3030 440 0.7972
0.7272 0.3168 460 0.7945
0.7194 0.3306 480 0.7919
0.7303 0.3444 500 0.7893
0.7205 0.3581 520 0.7868
0.7239 0.3719 540 0.7846
0.7029 0.3857 560 0.7824
0.695 0.3994 580 0.7804
0.7207 0.4132 600 0.7785
0.7406 0.4270 620 0.7763
0.7032 0.4408 640 0.7747
0.7011 0.4545 660 0.7726
0.6904 0.4683 680 0.7710
0.6949 0.4821 700 0.7694
0.7226 0.4959 720 0.7676
0.6762 0.5096 740 0.7661
0.7739 0.5234 760 0.7646
0.7166 0.5372 780 0.7633
0.6984 0.5510 800 0.7616
0.6933 0.5647 820 0.7603
0.679 0.5785 840 0.7592
0.7128 0.5923 860 0.7578
0.6924 0.6061 880 0.7567
0.6899 0.6198 900 0.7553
0.6965 0.6336 920 0.7542
0.6746 0.6474 940 0.7531
0.6708 0.6612 960 0.7518
0.6746 0.6749 980 0.7506
0.6747 0.6887 1000 0.7497
0.6814 0.7025 1020 0.7486
0.6758 0.7163 1040 0.7475
0.6752 0.7300 1060 0.7465
0.7218 0.7438 1080 0.7454
0.6733 0.7576 1100 0.7443
0.685 0.7713 1120 0.7435
0.6592 0.7851 1140 0.7427
0.6827 0.7989 1160 0.7417
0.732 0.8127 1180 0.7410
0.6803 0.8264 1200 0.7401
0.6643 0.8402 1220 0.7392
0.6805 0.8540 1240 0.7385
0.7031 0.8678 1260 0.7377
0.6857 0.8815 1280 0.7371
0.6663 0.8953 1300 0.7364
0.6788 0.9091 1320 0.7354
0.7035 0.9229 1340 0.7347
0.6669 0.9366 1360 0.7343
0.6869 0.9504 1380 0.7333
0.6996 0.9642 1400 0.7326
0.6985 0.9780 1420 0.7320
0.6678 0.9917 1440 0.7312
0.6306 1.0055 1460 0.7307
0.6634 1.0193 1480 0.7300
0.6708 1.0331 1500 0.7293
0.6596 1.0468 1520 0.7290
0.6837 1.0606 1540 0.7282
0.684 1.0744 1560 0.7276
0.6889 1.0882 1580 0.7269
0.6758 1.1019 1600 0.7265
0.6513 1.1157 1620 0.7260
0.6555 1.1295 1640 0.7255
0.66 1.1433 1660 0.7248
0.6808 1.1570 1680 0.7244
0.6482 1.1708 1700 0.7239
0.6662 1.1846 1720 0.7236
0.6438 1.1983 1740 0.7230
0.6369 1.2121 1760 0.7226
0.6516 1.2259 1780 0.7223
0.6547 1.2397 1800 0.7217
0.6489 1.2534 1820 0.7212
0.6729 1.2672 1840 0.7206
0.6717 1.2810 1860 0.7202
0.6622 1.2948 1880 0.7198
0.6587 1.3085 1900 0.7192
0.6796 1.3223 1920 0.7190
0.6571 1.3361 1940 0.7185
0.6237 1.3499 1960 0.7182
0.6473 1.3636 1980 0.7177
0.6528 1.3774 2000 0.7172
0.6795 1.3912 2020 0.7169
0.6397 1.4050 2040 0.7164
0.6471 1.4187 2060 0.7162
0.6247 1.4325 2080 0.7157
0.6623 1.4463 2100 0.7154
0.6656 1.4601 2120 0.7149
0.6573 1.4738 2140 0.7146
0.6317 1.4876 2160 0.7144
0.6455 1.5014 2180 0.7141
0.6426 1.5152 2200 0.7136
0.6472 1.5289 2220 0.7133
0.6447 1.5427 2240 0.7129
0.6618 1.5565 2260 0.7127
0.6706 1.5702 2280 0.7121
0.6581 1.5840 2300 0.7120
0.6337 1.5978 2320 0.7117
0.6526 1.6116 2340 0.7115
0.6379 1.6253 2360 0.7113
0.6366 1.6391 2380 0.7110
0.659 1.6529 2400 0.7107
0.6685 1.6667 2420 0.7103
0.6317 1.6804 2440 0.7100
0.6611 1.6942 2460 0.7098
0.6431 1.7080 2480 0.7094
0.6249 1.7218 2500 0.7091
0.6502 1.7355 2520 0.7088
0.6506 1.7493 2540 0.7086
0.6707 1.7631 2560 0.7083
0.6399 1.7769 2580 0.7081
0.6189 1.7906 2600 0.7079
0.6167 1.8044 2620 0.7078
0.6469 1.8182 2640 0.7075
0.6611 1.8320 2660 0.7073
0.6446 1.8457 2680 0.7071
0.6374 1.8595 2700 0.7068
0.6394 1.8733 2720 0.7066
0.6195 1.8871 2740 0.7063
0.6255 1.9008 2760 0.7060
0.6346 1.9146 2780 0.7059
0.6375 1.9284 2800 0.7058
0.6254 1.9421 2820 0.7056
0.6203 1.9559 2840 0.7056
0.6619 1.9697 2860 0.7039
0.6151 1.9835 2880 0.6930
0.6233 1.9972 2900 0.6823
0.5892 2.0110 2920 0.6747
0.6042 2.0248 2940 0.6678
0.6045 2.0386 2960 0.6627
0.5495 2.0523 2980 0.6552
0.579 2.0661 3000 0.6479
0.5868 2.0799 3020 0.6444
0.564 2.0937 3040 0.6419
0.5657 2.1074 3060 0.6381
0.6204 2.1212 3080 0.6348
0.5565 2.1350 3100 0.6314
0.5645 2.1488 3120 0.6253
0.5375 2.1625 3140 0.6246
0.5386 2.1763 3160 0.6194
0.5427 2.1901 3180 0.6194
0.556 2.2039 3200 0.6147
0.5428 2.2176 3220 0.6134
0.5598 2.2314 3240 0.6102
0.5304 2.2452 3260 0.6081
0.5201 2.2590 3280 0.6084
0.5168 2.2727 3300 0.6081
0.5309 2.2865 3320 0.6060
0.5051 2.3003 3340 0.6055
0.516 2.3140 3360 0.6026
0.5164 2.3278 3380 0.6016
0.5445 2.3416 3400 0.5978
0.5139 2.3554 3420 0.5984
0.5178 2.3691 3440 0.5968
0.5028 2.3829 3460 0.5974
0.5499 2.3967 3480 0.5940
0.493 2.4105 3500 0.5956
0.5218 2.4242 3520 0.6022
0.5468 2.4380 3540 0.5990
0.5282 2.4518 3560 0.5985
0.521 2.4656 3580 0.5965
0.5267 2.4793 3600 0.5952
0.4896 2.4931 3620 0.5923
0.5165 2.5069 3640 0.5877
0.4976 2.5207 3660 0.5880
0.5296 2.5344 3680 0.5865
0.506 2.5482 3700 0.5853
0.4869 2.5620 3720 0.5822
0.5062 2.5758 3740 0.5800
0.5116 2.5895 3760 0.5818
0.4781 2.6033 3780 0.5800
0.4819 2.6171 3800 0.5784
0.4937 2.6309 3820 0.5768
0.4934 2.6446 3840 0.5747
0.4932 2.6584 3860 0.5729
0.4938 2.6722 3880 0.5728
0.4741 2.6860 3900 0.5709
0.5275 2.6997 3920 0.5691
0.4808 2.7135 3940 0.5667
0.5362 2.7273 3960 0.5669
0.4926 2.7410 3980 0.5656
0.452 2.7548 4000 0.5679
0.482 2.7686 4020 0.5662
0.5015 2.7824 4040 0.5646
0.4782 2.7961 4060 0.5644
0.4462 2.8099 4080 0.5668
0.5052 2.8237 4100 0.5630
0.4967 2.8375 4120 0.5625
0.4944 2.8512 4140 0.5599
0.4818 2.8650 4160 0.5635
0.4883 2.8788 4180 0.5629
0.4817 2.8926 4200 0.5605
0.4229 2.9063 4220 0.5576
0.466 2.9201 4240 0.5557
0.4666 2.9339 4260 0.5596
0.4579 2.9477 4280 0.5565
0.4947 2.9614 4300 0.5535
0.4747 2.9752 4320 0.5531
0.4776 2.9890 4340 0.5535
0.493 3.0028 4360 0.5543
0.4521 3.0165 4380 0.5535
0.4488 3.0303 4400 0.5515
0.4858 3.0441 4420 0.5528
0.4496 3.0579 4440 0.5518
0.4564 3.0716 4460 0.5516
0.4418 3.0854 4480 0.5488
0.4803 3.0992 4500 0.5477
0.4678 3.1129 4520 0.5590
0.495 3.1267 4540 0.5565
0.4729 3.1405 4560 0.5506
0.491 3.1543 4580 0.5578
0.4929 3.1680 4600 0.5468
0.4558 3.1818 4620 0.5410
0.4504 3.1956 4640 0.5394
0.4641 3.2094 4660 0.5370
0.4694 3.2231 4680 0.5399
0.4549 3.2369 4700 0.5296
0.4759 3.2507 4720 0.5266
0.4405 3.2645 4740 0.5258
0.4444 3.2782 4760 0.5155
0.4494 3.2920 4780 0.5159
0.4451 3.3058 4800 0.5025
0.4292 3.3196 4820 0.4966
0.4197 3.3333 4840 0.4877
0.454 3.3471 4860 0.4852
0.3973 3.3609 4880 0.4778
0.3518 3.3747 4900 0.4709
0.4021 3.3884 4920 0.4593
0.4024 3.4022 4940 0.4510
0.3711 3.4160 4960 0.4521
0.3724 3.4298 4980 0.4366
0.3733 3.4435 5000 0.4260
0.3816 3.4573 5020 0.4199
0.3673 3.4711 5040 0.4169
0.3428 3.4848 5060 0.4063
0.3369 3.4986 5080 0.3998
0.3553 3.5124 5100 0.3898
0.3304 3.5262 5120 0.3827
0.3403 3.5399 5140 0.3773
0.3 3.5537 5160 0.3737
0.3441 3.5675 5180 0.3787
0.3022 3.5813 5200 0.3602
0.3205 3.5950 5220 0.3591
0.304 3.6088 5240 0.3527
0.3291 3.6226 5260 0.3457
0.2545 3.6364 5280 0.3405
0.2878 3.6501 5300 0.3324
0.2974 3.6639 5320 0.3316
0.278 3.6777 5340 0.3256
0.3123 3.6915 5360 0.3239
0.2838 3.7052 5380 0.3164
0.2876 3.7190 5400 0.3143
0.2974 3.7328 5420 0.3113
0.2508 3.7466 5440 0.3087
0.2793 3.7603 5460 0.3043
0.2858 3.7741 5480 0.2988
0.2761 3.7879 5500 0.2918
0.2378 3.8017 5520 0.2905
0.2419 3.8154 5540 0.2908
0.2414 3.8292 5560 0.2874
0.2702 3.8430 5580 0.2871
0.2875 3.8567 5600 0.2836
0.2457 3.8705 5620 0.2810
0.2574 3.8843 5640 0.2779
0.2391 3.8981 5660 0.2777
0.2426 3.9118 5680 0.2750
0.2459 3.9256 5700 0.2735
0.2283 3.9394 5720 0.2703
0.2269 3.9532 5740 0.2662
0.2051 3.9669 5760 0.2645
0.2235 3.9807 5780 0.2612
0.2038 3.9945 5800 0.2594
0.2268 4.0083 5820 0.2593
0.2068 4.0220 5840 0.2538
0.245 4.0358 5860 0.2508
0.2426 4.0496 5880 0.2520
0.1992 4.0634 5900 0.2506
0.2809 4.0771 5920 0.2482
0.195 4.0909 5940 0.2422
0.2125 4.1047 5960 0.2429
0.2376 4.1185 5980 0.2428
0.2237 4.1322 6000 0.2406
0.2138 4.1460 6020 0.2395
0.2001 4.1598 6040 0.2371
0.2051 4.1736 6060 0.2351
0.2127 4.1873 6080 0.2328
0.173 4.2011 6100 0.2335
0.1769 4.2149 6120 0.2344
0.1615 4.2287 6140 0.2298
0.1935 4.2424 6160 0.2286
0.1954 4.2562 6180 0.2290
0.208 4.2700 6200 0.2267
0.1896 4.2837 6220 0.2232
0.2094 4.2975 6240 0.2206
0.1854 4.3113 6260 0.2212
0.1948 4.3251 6280 0.2196
0.1667 4.3388 6300 0.2194
0.1926 4.3526 6320 0.2168
0.1657 4.3664 6340 0.2158
0.1802 4.3802 6360 0.2140
0.1564 4.3939 6380 0.2164
0.1864 4.4077 6400 0.2145
0.187 4.4215 6420 0.2145
0.1868 4.4353 6440 0.2130
0.189 4.4490 6460 0.2107
0.1808 4.4628 6480 0.2102
0.1828 4.4766 6500 0.2079
0.1771 4.4904 6520 0.2081
0.1856 4.5041 6540 0.2061
0.1685 4.5179 6560 0.2045
0.1567 4.5317 6580 0.2059
0.1913 4.5455 6600 0.2051
0.1937 4.5592 6620 0.2031
0.1823 4.5730 6640 0.2024
0.1613 4.5868 6660 0.2021
0.1837 4.6006 6680 0.2012
0.1419 4.6143 6700 0.2012
0.1769 4.6281 6720 0.1997
0.1683 4.6419 6740 0.1977
0.1614 4.6556 6760 0.1986
0.1686 4.6694 6780 0.1990
0.1851 4.6832 6800 0.1976
0.1529 4.6970 6820 0.1978
0.1746 4.7107 6840 0.2065
0.1474 4.7245 6860 0.1999
0.1415 4.7383 6880 0.1980
0.1709 4.7521 6900 0.1965
0.1673 4.7658 6920 0.1958
0.1732 4.7796 6940 0.1953
0.1424 4.7934 6960 0.1947
0.1271 4.8072 6980 0.1940
0.1893 4.8209 7000 0.1936
0.1696 4.8347 7020 0.1917
0.1644 4.8485 7040 0.1916
0.1509 4.8623 7060 0.1912
0.1507 4.8760 7080 0.1912
0.1471 4.8898 7100 0.1900
0.1554 4.9036 7120 0.1895
0.1547 4.9174 7140 0.1892
0.1787 4.9311 7160 0.1888
0.1436 4.9449 7180 0.1889
0.1522 4.9587 7200 0.1886
0.1657 4.9725 7220 0.1886
0.1716 4.9862 7240 0.1885
0.1889 5.0 7260 0.1884

Framework versions

  • PEFT 0.14.0
  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for chuuhtetnaing/smolvlm-mmocr-sft