smolvlm-mmocr-sft
This model is a fine-tuned version of HuggingFaceTB/SmolVLM-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1884
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.7936 | 0.0138 | 20 | 0.8587 |
| 0.7632 | 0.0275 | 40 | 0.8587 |
| 0.7891 | 0.0413 | 60 | 0.8584 |
| 0.7804 | 0.0551 | 80 | 0.8581 |
| 0.802 | 0.0689 | 100 | 0.8572 |
| 0.7793 | 0.0826 | 120 | 0.8562 |
| 0.7857 | 0.0964 | 140 | 0.8546 |
| 0.7788 | 0.1102 | 160 | 0.8524 |
| 0.7979 | 0.1240 | 180 | 0.8498 |
| 0.78 | 0.1377 | 200 | 0.8459 |
| 0.7597 | 0.1515 | 220 | 0.8410 |
| 0.7325 | 0.1653 | 240 | 0.8366 |
| 0.761 | 0.1791 | 260 | 0.8316 |
| 0.7802 | 0.1928 | 280 | 0.8265 |
| 0.7239 | 0.2066 | 300 | 0.8217 |
| 0.7196 | 0.2204 | 320 | 0.8176 |
| 0.7355 | 0.2342 | 340 | 0.8137 |
| 0.72 | 0.2479 | 360 | 0.8097 |
| 0.7521 | 0.2617 | 380 | 0.8061 |
| 0.725 | 0.2755 | 400 | 0.8030 |
| 0.7314 | 0.2893 | 420 | 0.8001 |
| 0.7148 | 0.3030 | 440 | 0.7972 |
| 0.7272 | 0.3168 | 460 | 0.7945 |
| 0.7194 | 0.3306 | 480 | 0.7919 |
| 0.7303 | 0.3444 | 500 | 0.7893 |
| 0.7205 | 0.3581 | 520 | 0.7868 |
| 0.7239 | 0.3719 | 540 | 0.7846 |
| 0.7029 | 0.3857 | 560 | 0.7824 |
| 0.695 | 0.3994 | 580 | 0.7804 |
| 0.7207 | 0.4132 | 600 | 0.7785 |
| 0.7406 | 0.4270 | 620 | 0.7763 |
| 0.7032 | 0.4408 | 640 | 0.7747 |
| 0.7011 | 0.4545 | 660 | 0.7726 |
| 0.6904 | 0.4683 | 680 | 0.7710 |
| 0.6949 | 0.4821 | 700 | 0.7694 |
| 0.7226 | 0.4959 | 720 | 0.7676 |
| 0.6762 | 0.5096 | 740 | 0.7661 |
| 0.7739 | 0.5234 | 760 | 0.7646 |
| 0.7166 | 0.5372 | 780 | 0.7633 |
| 0.6984 | 0.5510 | 800 | 0.7616 |
| 0.6933 | 0.5647 | 820 | 0.7603 |
| 0.679 | 0.5785 | 840 | 0.7592 |
| 0.7128 | 0.5923 | 860 | 0.7578 |
| 0.6924 | 0.6061 | 880 | 0.7567 |
| 0.6899 | 0.6198 | 900 | 0.7553 |
| 0.6965 | 0.6336 | 920 | 0.7542 |
| 0.6746 | 0.6474 | 940 | 0.7531 |
| 0.6708 | 0.6612 | 960 | 0.7518 |
| 0.6746 | 0.6749 | 980 | 0.7506 |
| 0.6747 | 0.6887 | 1000 | 0.7497 |
| 0.6814 | 0.7025 | 1020 | 0.7486 |
| 0.6758 | 0.7163 | 1040 | 0.7475 |
| 0.6752 | 0.7300 | 1060 | 0.7465 |
| 0.7218 | 0.7438 | 1080 | 0.7454 |
| 0.6733 | 0.7576 | 1100 | 0.7443 |
| 0.685 | 0.7713 | 1120 | 0.7435 |
| 0.6592 | 0.7851 | 1140 | 0.7427 |
| 0.6827 | 0.7989 | 1160 | 0.7417 |
| 0.732 | 0.8127 | 1180 | 0.7410 |
| 0.6803 | 0.8264 | 1200 | 0.7401 |
| 0.6643 | 0.8402 | 1220 | 0.7392 |
| 0.6805 | 0.8540 | 1240 | 0.7385 |
| 0.7031 | 0.8678 | 1260 | 0.7377 |
| 0.6857 | 0.8815 | 1280 | 0.7371 |
| 0.6663 | 0.8953 | 1300 | 0.7364 |
| 0.6788 | 0.9091 | 1320 | 0.7354 |
| 0.7035 | 0.9229 | 1340 | 0.7347 |
| 0.6669 | 0.9366 | 1360 | 0.7343 |
| 0.6869 | 0.9504 | 1380 | 0.7333 |
| 0.6996 | 0.9642 | 1400 | 0.7326 |
| 0.6985 | 0.9780 | 1420 | 0.7320 |
| 0.6678 | 0.9917 | 1440 | 0.7312 |
| 0.6306 | 1.0055 | 1460 | 0.7307 |
| 0.6634 | 1.0193 | 1480 | 0.7300 |
| 0.6708 | 1.0331 | 1500 | 0.7293 |
| 0.6596 | 1.0468 | 1520 | 0.7290 |
| 0.6837 | 1.0606 | 1540 | 0.7282 |
| 0.684 | 1.0744 | 1560 | 0.7276 |
| 0.6889 | 1.0882 | 1580 | 0.7269 |
| 0.6758 | 1.1019 | 1600 | 0.7265 |
| 0.6513 | 1.1157 | 1620 | 0.7260 |
| 0.6555 | 1.1295 | 1640 | 0.7255 |
| 0.66 | 1.1433 | 1660 | 0.7248 |
| 0.6808 | 1.1570 | 1680 | 0.7244 |
| 0.6482 | 1.1708 | 1700 | 0.7239 |
| 0.6662 | 1.1846 | 1720 | 0.7236 |
| 0.6438 | 1.1983 | 1740 | 0.7230 |
| 0.6369 | 1.2121 | 1760 | 0.7226 |
| 0.6516 | 1.2259 | 1780 | 0.7223 |
| 0.6547 | 1.2397 | 1800 | 0.7217 |
| 0.6489 | 1.2534 | 1820 | 0.7212 |
| 0.6729 | 1.2672 | 1840 | 0.7206 |
| 0.6717 | 1.2810 | 1860 | 0.7202 |
| 0.6622 | 1.2948 | 1880 | 0.7198 |
| 0.6587 | 1.3085 | 1900 | 0.7192 |
| 0.6796 | 1.3223 | 1920 | 0.7190 |
| 0.6571 | 1.3361 | 1940 | 0.7185 |
| 0.6237 | 1.3499 | 1960 | 0.7182 |
| 0.6473 | 1.3636 | 1980 | 0.7177 |
| 0.6528 | 1.3774 | 2000 | 0.7172 |
| 0.6795 | 1.3912 | 2020 | 0.7169 |
| 0.6397 | 1.4050 | 2040 | 0.7164 |
| 0.6471 | 1.4187 | 2060 | 0.7162 |
| 0.6247 | 1.4325 | 2080 | 0.7157 |
| 0.6623 | 1.4463 | 2100 | 0.7154 |
| 0.6656 | 1.4601 | 2120 | 0.7149 |
| 0.6573 | 1.4738 | 2140 | 0.7146 |
| 0.6317 | 1.4876 | 2160 | 0.7144 |
| 0.6455 | 1.5014 | 2180 | 0.7141 |
| 0.6426 | 1.5152 | 2200 | 0.7136 |
| 0.6472 | 1.5289 | 2220 | 0.7133 |
| 0.6447 | 1.5427 | 2240 | 0.7129 |
| 0.6618 | 1.5565 | 2260 | 0.7127 |
| 0.6706 | 1.5702 | 2280 | 0.7121 |
| 0.6581 | 1.5840 | 2300 | 0.7120 |
| 0.6337 | 1.5978 | 2320 | 0.7117 |
| 0.6526 | 1.6116 | 2340 | 0.7115 |
| 0.6379 | 1.6253 | 2360 | 0.7113 |
| 0.6366 | 1.6391 | 2380 | 0.7110 |
| 0.659 | 1.6529 | 2400 | 0.7107 |
| 0.6685 | 1.6667 | 2420 | 0.7103 |
| 0.6317 | 1.6804 | 2440 | 0.7100 |
| 0.6611 | 1.6942 | 2460 | 0.7098 |
| 0.6431 | 1.7080 | 2480 | 0.7094 |
| 0.6249 | 1.7218 | 2500 | 0.7091 |
| 0.6502 | 1.7355 | 2520 | 0.7088 |
| 0.6506 | 1.7493 | 2540 | 0.7086 |
| 0.6707 | 1.7631 | 2560 | 0.7083 |
| 0.6399 | 1.7769 | 2580 | 0.7081 |
| 0.6189 | 1.7906 | 2600 | 0.7079 |
| 0.6167 | 1.8044 | 2620 | 0.7078 |
| 0.6469 | 1.8182 | 2640 | 0.7075 |
| 0.6611 | 1.8320 | 2660 | 0.7073 |
| 0.6446 | 1.8457 | 2680 | 0.7071 |
| 0.6374 | 1.8595 | 2700 | 0.7068 |
| 0.6394 | 1.8733 | 2720 | 0.7066 |
| 0.6195 | 1.8871 | 2740 | 0.7063 |
| 0.6255 | 1.9008 | 2760 | 0.7060 |
| 0.6346 | 1.9146 | 2780 | 0.7059 |
| 0.6375 | 1.9284 | 2800 | 0.7058 |
| 0.6254 | 1.9421 | 2820 | 0.7056 |
| 0.6203 | 1.9559 | 2840 | 0.7056 |
| 0.6619 | 1.9697 | 2860 | 0.7039 |
| 0.6151 | 1.9835 | 2880 | 0.6930 |
| 0.6233 | 1.9972 | 2900 | 0.6823 |
| 0.5892 | 2.0110 | 2920 | 0.6747 |
| 0.6042 | 2.0248 | 2940 | 0.6678 |
| 0.6045 | 2.0386 | 2960 | 0.6627 |
| 0.5495 | 2.0523 | 2980 | 0.6552 |
| 0.579 | 2.0661 | 3000 | 0.6479 |
| 0.5868 | 2.0799 | 3020 | 0.6444 |
| 0.564 | 2.0937 | 3040 | 0.6419 |
| 0.5657 | 2.1074 | 3060 | 0.6381 |
| 0.6204 | 2.1212 | 3080 | 0.6348 |
| 0.5565 | 2.1350 | 3100 | 0.6314 |
| 0.5645 | 2.1488 | 3120 | 0.6253 |
| 0.5375 | 2.1625 | 3140 | 0.6246 |
| 0.5386 | 2.1763 | 3160 | 0.6194 |
| 0.5427 | 2.1901 | 3180 | 0.6194 |
| 0.556 | 2.2039 | 3200 | 0.6147 |
| 0.5428 | 2.2176 | 3220 | 0.6134 |
| 0.5598 | 2.2314 | 3240 | 0.6102 |
| 0.5304 | 2.2452 | 3260 | 0.6081 |
| 0.5201 | 2.2590 | 3280 | 0.6084 |
| 0.5168 | 2.2727 | 3300 | 0.6081 |
| 0.5309 | 2.2865 | 3320 | 0.6060 |
| 0.5051 | 2.3003 | 3340 | 0.6055 |
| 0.516 | 2.3140 | 3360 | 0.6026 |
| 0.5164 | 2.3278 | 3380 | 0.6016 |
| 0.5445 | 2.3416 | 3400 | 0.5978 |
| 0.5139 | 2.3554 | 3420 | 0.5984 |
| 0.5178 | 2.3691 | 3440 | 0.5968 |
| 0.5028 | 2.3829 | 3460 | 0.5974 |
| 0.5499 | 2.3967 | 3480 | 0.5940 |
| 0.493 | 2.4105 | 3500 | 0.5956 |
| 0.5218 | 2.4242 | 3520 | 0.6022 |
| 0.5468 | 2.4380 | 3540 | 0.5990 |
| 0.5282 | 2.4518 | 3560 | 0.5985 |
| 0.521 | 2.4656 | 3580 | 0.5965 |
| 0.5267 | 2.4793 | 3600 | 0.5952 |
| 0.4896 | 2.4931 | 3620 | 0.5923 |
| 0.5165 | 2.5069 | 3640 | 0.5877 |
| 0.4976 | 2.5207 | 3660 | 0.5880 |
| 0.5296 | 2.5344 | 3680 | 0.5865 |
| 0.506 | 2.5482 | 3700 | 0.5853 |
| 0.4869 | 2.5620 | 3720 | 0.5822 |
| 0.5062 | 2.5758 | 3740 | 0.5800 |
| 0.5116 | 2.5895 | 3760 | 0.5818 |
| 0.4781 | 2.6033 | 3780 | 0.5800 |
| 0.4819 | 2.6171 | 3800 | 0.5784 |
| 0.4937 | 2.6309 | 3820 | 0.5768 |
| 0.4934 | 2.6446 | 3840 | 0.5747 |
| 0.4932 | 2.6584 | 3860 | 0.5729 |
| 0.4938 | 2.6722 | 3880 | 0.5728 |
| 0.4741 | 2.6860 | 3900 | 0.5709 |
| 0.5275 | 2.6997 | 3920 | 0.5691 |
| 0.4808 | 2.7135 | 3940 | 0.5667 |
| 0.5362 | 2.7273 | 3960 | 0.5669 |
| 0.4926 | 2.7410 | 3980 | 0.5656 |
| 0.452 | 2.7548 | 4000 | 0.5679 |
| 0.482 | 2.7686 | 4020 | 0.5662 |
| 0.5015 | 2.7824 | 4040 | 0.5646 |
| 0.4782 | 2.7961 | 4060 | 0.5644 |
| 0.4462 | 2.8099 | 4080 | 0.5668 |
| 0.5052 | 2.8237 | 4100 | 0.5630 |
| 0.4967 | 2.8375 | 4120 | 0.5625 |
| 0.4944 | 2.8512 | 4140 | 0.5599 |
| 0.4818 | 2.8650 | 4160 | 0.5635 |
| 0.4883 | 2.8788 | 4180 | 0.5629 |
| 0.4817 | 2.8926 | 4200 | 0.5605 |
| 0.4229 | 2.9063 | 4220 | 0.5576 |
| 0.466 | 2.9201 | 4240 | 0.5557 |
| 0.4666 | 2.9339 | 4260 | 0.5596 |
| 0.4579 | 2.9477 | 4280 | 0.5565 |
| 0.4947 | 2.9614 | 4300 | 0.5535 |
| 0.4747 | 2.9752 | 4320 | 0.5531 |
| 0.4776 | 2.9890 | 4340 | 0.5535 |
| 0.493 | 3.0028 | 4360 | 0.5543 |
| 0.4521 | 3.0165 | 4380 | 0.5535 |
| 0.4488 | 3.0303 | 4400 | 0.5515 |
| 0.4858 | 3.0441 | 4420 | 0.5528 |
| 0.4496 | 3.0579 | 4440 | 0.5518 |
| 0.4564 | 3.0716 | 4460 | 0.5516 |
| 0.4418 | 3.0854 | 4480 | 0.5488 |
| 0.4803 | 3.0992 | 4500 | 0.5477 |
| 0.4678 | 3.1129 | 4520 | 0.5590 |
| 0.495 | 3.1267 | 4540 | 0.5565 |
| 0.4729 | 3.1405 | 4560 | 0.5506 |
| 0.491 | 3.1543 | 4580 | 0.5578 |
| 0.4929 | 3.1680 | 4600 | 0.5468 |
| 0.4558 | 3.1818 | 4620 | 0.5410 |
| 0.4504 | 3.1956 | 4640 | 0.5394 |
| 0.4641 | 3.2094 | 4660 | 0.5370 |
| 0.4694 | 3.2231 | 4680 | 0.5399 |
| 0.4549 | 3.2369 | 4700 | 0.5296 |
| 0.4759 | 3.2507 | 4720 | 0.5266 |
| 0.4405 | 3.2645 | 4740 | 0.5258 |
| 0.4444 | 3.2782 | 4760 | 0.5155 |
| 0.4494 | 3.2920 | 4780 | 0.5159 |
| 0.4451 | 3.3058 | 4800 | 0.5025 |
| 0.4292 | 3.3196 | 4820 | 0.4966 |
| 0.4197 | 3.3333 | 4840 | 0.4877 |
| 0.454 | 3.3471 | 4860 | 0.4852 |
| 0.3973 | 3.3609 | 4880 | 0.4778 |
| 0.3518 | 3.3747 | 4900 | 0.4709 |
| 0.4021 | 3.3884 | 4920 | 0.4593 |
| 0.4024 | 3.4022 | 4940 | 0.4510 |
| 0.3711 | 3.4160 | 4960 | 0.4521 |
| 0.3724 | 3.4298 | 4980 | 0.4366 |
| 0.3733 | 3.4435 | 5000 | 0.4260 |
| 0.3816 | 3.4573 | 5020 | 0.4199 |
| 0.3673 | 3.4711 | 5040 | 0.4169 |
| 0.3428 | 3.4848 | 5060 | 0.4063 |
| 0.3369 | 3.4986 | 5080 | 0.3998 |
| 0.3553 | 3.5124 | 5100 | 0.3898 |
| 0.3304 | 3.5262 | 5120 | 0.3827 |
| 0.3403 | 3.5399 | 5140 | 0.3773 |
| 0.3 | 3.5537 | 5160 | 0.3737 |
| 0.3441 | 3.5675 | 5180 | 0.3787 |
| 0.3022 | 3.5813 | 5200 | 0.3602 |
| 0.3205 | 3.5950 | 5220 | 0.3591 |
| 0.304 | 3.6088 | 5240 | 0.3527 |
| 0.3291 | 3.6226 | 5260 | 0.3457 |
| 0.2545 | 3.6364 | 5280 | 0.3405 |
| 0.2878 | 3.6501 | 5300 | 0.3324 |
| 0.2974 | 3.6639 | 5320 | 0.3316 |
| 0.278 | 3.6777 | 5340 | 0.3256 |
| 0.3123 | 3.6915 | 5360 | 0.3239 |
| 0.2838 | 3.7052 | 5380 | 0.3164 |
| 0.2876 | 3.7190 | 5400 | 0.3143 |
| 0.2974 | 3.7328 | 5420 | 0.3113 |
| 0.2508 | 3.7466 | 5440 | 0.3087 |
| 0.2793 | 3.7603 | 5460 | 0.3043 |
| 0.2858 | 3.7741 | 5480 | 0.2988 |
| 0.2761 | 3.7879 | 5500 | 0.2918 |
| 0.2378 | 3.8017 | 5520 | 0.2905 |
| 0.2419 | 3.8154 | 5540 | 0.2908 |
| 0.2414 | 3.8292 | 5560 | 0.2874 |
| 0.2702 | 3.8430 | 5580 | 0.2871 |
| 0.2875 | 3.8567 | 5600 | 0.2836 |
| 0.2457 | 3.8705 | 5620 | 0.2810 |
| 0.2574 | 3.8843 | 5640 | 0.2779 |
| 0.2391 | 3.8981 | 5660 | 0.2777 |
| 0.2426 | 3.9118 | 5680 | 0.2750 |
| 0.2459 | 3.9256 | 5700 | 0.2735 |
| 0.2283 | 3.9394 | 5720 | 0.2703 |
| 0.2269 | 3.9532 | 5740 | 0.2662 |
| 0.2051 | 3.9669 | 5760 | 0.2645 |
| 0.2235 | 3.9807 | 5780 | 0.2612 |
| 0.2038 | 3.9945 | 5800 | 0.2594 |
| 0.2268 | 4.0083 | 5820 | 0.2593 |
| 0.2068 | 4.0220 | 5840 | 0.2538 |
| 0.245 | 4.0358 | 5860 | 0.2508 |
| 0.2426 | 4.0496 | 5880 | 0.2520 |
| 0.1992 | 4.0634 | 5900 | 0.2506 |
| 0.2809 | 4.0771 | 5920 | 0.2482 |
| 0.195 | 4.0909 | 5940 | 0.2422 |
| 0.2125 | 4.1047 | 5960 | 0.2429 |
| 0.2376 | 4.1185 | 5980 | 0.2428 |
| 0.2237 | 4.1322 | 6000 | 0.2406 |
| 0.2138 | 4.1460 | 6020 | 0.2395 |
| 0.2001 | 4.1598 | 6040 | 0.2371 |
| 0.2051 | 4.1736 | 6060 | 0.2351 |
| 0.2127 | 4.1873 | 6080 | 0.2328 |
| 0.173 | 4.2011 | 6100 | 0.2335 |
| 0.1769 | 4.2149 | 6120 | 0.2344 |
| 0.1615 | 4.2287 | 6140 | 0.2298 |
| 0.1935 | 4.2424 | 6160 | 0.2286 |
| 0.1954 | 4.2562 | 6180 | 0.2290 |
| 0.208 | 4.2700 | 6200 | 0.2267 |
| 0.1896 | 4.2837 | 6220 | 0.2232 |
| 0.2094 | 4.2975 | 6240 | 0.2206 |
| 0.1854 | 4.3113 | 6260 | 0.2212 |
| 0.1948 | 4.3251 | 6280 | 0.2196 |
| 0.1667 | 4.3388 | 6300 | 0.2194 |
| 0.1926 | 4.3526 | 6320 | 0.2168 |
| 0.1657 | 4.3664 | 6340 | 0.2158 |
| 0.1802 | 4.3802 | 6360 | 0.2140 |
| 0.1564 | 4.3939 | 6380 | 0.2164 |
| 0.1864 | 4.4077 | 6400 | 0.2145 |
| 0.187 | 4.4215 | 6420 | 0.2145 |
| 0.1868 | 4.4353 | 6440 | 0.2130 |
| 0.189 | 4.4490 | 6460 | 0.2107 |
| 0.1808 | 4.4628 | 6480 | 0.2102 |
| 0.1828 | 4.4766 | 6500 | 0.2079 |
| 0.1771 | 4.4904 | 6520 | 0.2081 |
| 0.1856 | 4.5041 | 6540 | 0.2061 |
| 0.1685 | 4.5179 | 6560 | 0.2045 |
| 0.1567 | 4.5317 | 6580 | 0.2059 |
| 0.1913 | 4.5455 | 6600 | 0.2051 |
| 0.1937 | 4.5592 | 6620 | 0.2031 |
| 0.1823 | 4.5730 | 6640 | 0.2024 |
| 0.1613 | 4.5868 | 6660 | 0.2021 |
| 0.1837 | 4.6006 | 6680 | 0.2012 |
| 0.1419 | 4.6143 | 6700 | 0.2012 |
| 0.1769 | 4.6281 | 6720 | 0.1997 |
| 0.1683 | 4.6419 | 6740 | 0.1977 |
| 0.1614 | 4.6556 | 6760 | 0.1986 |
| 0.1686 | 4.6694 | 6780 | 0.1990 |
| 0.1851 | 4.6832 | 6800 | 0.1976 |
| 0.1529 | 4.6970 | 6820 | 0.1978 |
| 0.1746 | 4.7107 | 6840 | 0.2065 |
| 0.1474 | 4.7245 | 6860 | 0.1999 |
| 0.1415 | 4.7383 | 6880 | 0.1980 |
| 0.1709 | 4.7521 | 6900 | 0.1965 |
| 0.1673 | 4.7658 | 6920 | 0.1958 |
| 0.1732 | 4.7796 | 6940 | 0.1953 |
| 0.1424 | 4.7934 | 6960 | 0.1947 |
| 0.1271 | 4.8072 | 6980 | 0.1940 |
| 0.1893 | 4.8209 | 7000 | 0.1936 |
| 0.1696 | 4.8347 | 7020 | 0.1917 |
| 0.1644 | 4.8485 | 7040 | 0.1916 |
| 0.1509 | 4.8623 | 7060 | 0.1912 |
| 0.1507 | 4.8760 | 7080 | 0.1912 |
| 0.1471 | 4.8898 | 7100 | 0.1900 |
| 0.1554 | 4.9036 | 7120 | 0.1895 |
| 0.1547 | 4.9174 | 7140 | 0.1892 |
| 0.1787 | 4.9311 | 7160 | 0.1888 |
| 0.1436 | 4.9449 | 7180 | 0.1889 |
| 0.1522 | 4.9587 | 7200 | 0.1886 |
| 0.1657 | 4.9725 | 7220 | 0.1886 |
| 0.1716 | 4.9862 | 7240 | 0.1885 |
| 0.1889 | 5.0 | 7260 | 0.1884 |
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for chuuhtetnaing/smolvlm-mmocr-sft
Base model
HuggingFaceTB/SmolLM2-1.7B
Quantized
HuggingFaceTB/SmolLM2-1.7B-Instruct
Quantized
HuggingFaceTB/SmolVLM-Instruct