conplag2_codeberta_ep30_bs16_lr5e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4449
- Accuracy: 0.8029
- Recall: 0.7632
- Precision: 0.6170
- F1: 0.6824
- F Beta Score: 0.7113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6532 | 1.0 | 40 | 0.4449 | 0.8029 | 0.7632 | 0.6170 | 0.6824 | 0.7113 |
| 0.6059 | 2.0 | 80 | 0.4663 | 0.8102 | 0.7368 | 0.6364 | 0.6829 | 0.7027 |
| 0.3965 | 3.0 | 120 | 0.4770 | 0.8686 | 0.6579 | 0.8333 | 0.7353 | 0.7035 |
| 0.323 | 4.0 | 160 | 0.7357 | 0.8759 | 0.6053 | 0.92 | 0.7302 | 0.6765 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 9
Model tree for buelfhood/conplag2_codeberta_ep30_bs16_lr5e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1