conplag1_codeberta_ep30_bs16_lr2e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4731
- Accuracy: 0.8613
- Recall: 0.6842
- Precision: 0.7879
- F1: 0.7324
- F Beta Score: 0.7131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6133 | 1.0 | 40 | 0.6526 | 0.4380 | 0.9474 | 0.3243 | 0.4832 | 0.5954 |
| 0.5202 | 2.0 | 80 | 0.4731 | 0.8613 | 0.6842 | 0.7879 | 0.7324 | 0.7131 |
| 0.5208 | 3.0 | 120 | 0.7298 | 0.8248 | 0.3684 | 1.0 | 0.5385 | 0.4573 |
| 0.2736 | 4.0 | 160 | 0.6410 | 0.8540 | 0.5526 | 0.875 | 0.6774 | 0.6233 |
| 0.2085 | 5.0 | 200 | 0.6122 | 0.8029 | 0.6053 | 0.6571 | 0.6301 | 0.6203 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for buelfhood/conplag1_codeberta_ep30_bs16_lr2e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1