conplag1_codeberta_ep30_bs16_lr1e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.8467
- Recall: 0.5263
- Precision: 0.8696
- F1: 0.6557
- F Beta Score: 0.5991
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6673 | 1.0 | 40 | 0.6376 | 0.6569 | 0.6579 | 0.4237 | 0.5155 | 0.5623 |
| 0.6 | 2.0 | 80 | 0.5685 | 0.5766 | 0.8158 | 0.3780 | 0.5167 | 0.6015 |
| 0.5066 | 3.0 | 120 | 0.5008 | 0.8467 | 0.5263 | 0.8696 | 0.6557 | 0.5991 |
| 0.3206 | 4.0 | 160 | 0.5207 | 0.8394 | 0.5526 | 0.8077 | 0.6562 | 0.6121 |
| 0.281 | 5.0 | 200 | 0.5530 | 0.8467 | 0.5263 | 0.8696 | 0.6557 | 0.5991 |
| 0.2482 | 6.0 | 240 | 0.6371 | 0.8248 | 0.5 | 0.7917 | 0.6129 | 0.5639 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for buelfhood/conplag1_codeberta_ep30_bs16_lr1e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1