AdaptiveLayers
Collection
.
•
4 items
•
Updated
[n_layers_per_step = -1, last_layer_weight = 1 * (model_layers-1), prior_layers_weight= 0.85, kl_div_weight = 2, kl_temperature= 10, lr = 1e-6. batch = 42, schedule = cosine]
This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm")
# Run inference
sentences = [
'A professional swimmer spits water out after surfacing while grabbing the hand of someone helping him back to land.',
'The swimmer almost drowned after being sucked under a fast current.',
'A group of people wait in a line.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
BinaryClassificationEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.6578 |
| cosine_accuracy_threshold | 0.7229 |
| cosine_f1 | 0.7058 |
| cosine_f1_threshold | 0.6019 |
| cosine_precision | 0.5867 |
| cosine_recall | 0.8856 |
| cosine_ap | 0.6972 |
| dot_accuracy | 0.6157 |
| dot_accuracy_threshold | 240.6936 |
| dot_f1 | 0.6995 |
| dot_f1_threshold | 180.5902 |
| dot_precision | 0.5604 |
| dot_recall | 0.9305 |
| dot_ap | 0.6228 |
| manhattan_accuracy | 0.6659 |
| manhattan_accuracy_threshold | 281.6326 |
| manhattan_f1 | 0.7097 |
| manhattan_f1_threshold | 315.9025 |
| manhattan_precision | 0.6168 |
| manhattan_recall | 0.8354 |
| manhattan_ap | 0.711 |
| euclidean_accuracy | 0.6627 |
| euclidean_accuracy_threshold | 14.1948 |
| euclidean_f1 | 0.7064 |
| euclidean_f1_threshold | 17.0041 |
| euclidean_precision | 0.5816 |
| euclidean_recall | 0.8995 |
| euclidean_ap | 0.7094 |
| max_accuracy | 0.6659 |
| max_accuracy_threshold | 281.6326 |
| max_f1 | 0.7097 |
| max_f1_threshold | 315.9025 |
| max_precision | 0.6168 |
| max_recall | 0.9305 |
| max_ap | 0.711 |
sentence1, sentence2, and label| sentence1 | sentence2 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence1 | sentence2 | label |
|---|---|---|
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
0 |
Children smiling and waving at camera |
There are children present |
0 |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
0 |
AdaptiveLayerLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 6,
"prior_layers_weight": 0.85,
"kl_div_weight": 2,
"kl_temperature": 10
}
premise, hypothesis, and label| premise | hypothesis | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| premise | hypothesis | label |
|---|---|---|
This church choir sings to the masses as they sing joyous songs from the book at a church. |
The church has cracks in the ceiling. |
0 |
This church choir sings to the masses as they sing joyous songs from the book at a church. |
The church is filled with song. |
1 |
A woman with a green headscarf, blue shirt and a very big grin. |
The woman is young. |
0 |
AdaptiveLayerLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": -1,
"last_layer_weight": 6,
"prior_layers_weight": 0.85,
"kl_div_weight": 2,
"kl_temperature": 10
}
eval_strategy: stepsper_device_train_batch_size: 42per_device_eval_batch_size: 32learning_rate: 1e-06weight_decay: 1e-08num_train_epochs: 1lr_scheduler_type: cosinewarmup_ratio: 0.2save_safetensors: Falsefp16: Truehub_model_id: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy: checkpointbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 42per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 1e-06weight_decay: 1e-08adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: bobox/DeBERTaV3-small-SenTra-AdaptiveLayerAllNorm-tmphub_strategy: checkpointhub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | loss | max_ap |
|---|---|---|---|---|
| 0.0501 | 375 | 23.8735 | 21.0352 | 0.6131 |
| 0.1002 | 750 | 22.4091 | 19.6992 | 0.6353 |
| 0.1503 | 1125 | 19.4663 | 16.2104 | 0.6580 |
| 0.2004 | 1500 | 15.348 | 13.2038 | 0.6732 |
| 0.2505 | 1875 | 12.5377 | 11.6357 | 0.6815 |
| 0.3006 | 2250 | 11.4576 | 10.7570 | 0.6862 |
| 0.3507 | 2625 | 10.7446 | 10.1819 | 0.6891 |
| 0.4009 | 3000 | 10.2323 | 9.7470 | 0.6904 |
| 0.4510 | 3375 | 9.9825 | 9.4256 | 0.6914 |
| 0.5011 | 3750 | 9.6954 | 9.2200 | 0.6923 |
| 0.5512 | 4125 | 9.6359 | 9.0367 | 0.6923 |
| 0.6013 | 4500 | 8.3103 | 7.8258 | 0.7026 |
| 0.6514 | 4875 | 4.4845 | 7.4044 | 0.7073 |
| 0.7015 | 5250 | 3.8303 | 7.2647 | 0.7092 |
| 0.7516 | 5625 | 3.5617 | 7.2020 | 0.7098 |
| 0.8017 | 6000 | 3.4088 | 7.1684 | 0.7103 |
| 0.8518 | 6375 | 3.347 | 7.1531 | 0.7108 |
| 0.9019 | 6750 | 3.2064 | 7.1451 | 0.7109 |
| 0.9520 | 7125 | 3.3096 | 7.1427 | 0.7110 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
microsoft/deberta-v3-small