badrex's picture
Update README.md
2661d9d verified
metadata
library_name: transformers
license: cc-by-4.0
datasets:
  - badrex/ethiopian-speech-flat

Automatic Speech Recognition for Wolaytta 🇪🇹

Hugging Face Hugging Face License

🍇 Model Description

This is a Automatic Speech Recognition (ASR) model for Wolaytta, one of the official languages of Ethiopia. It is fine‑tuned from Wav2Vec2‑BERT 2.0 using the Ethio speech corpus.

  • Developed by: Badr al-Absi
  • Model type: Speech Recognition (ASR)
  • Languages: Wolaytta
  • License: CC-BY-4.0
  • Finetuned from: facebook/w2v-bert-2.0

🎧 Direct Use

from transformers import Wav2Vec2BertProcessor, Wav2Vec2BertForCTC
import torchaudio, torch

processor = Wav2Vec2BertProcessor.from_pretrained("badrex/w2v-bert-2.0-wolaytta-asr")
model = Wav2Vec2BertForCTC.from_pretrained("badrex/w2v-bert-2.0-wolaytta-asr")

audio, sr = torchaudio.load("audio.wav")
inputs = processor(audio.squeeze(), sampling_rate=sr, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs).logits

pred_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(pred_ids)[0]

print(transcription)

🔧 Downstream Use

  • Voice assistants
  • Accessibility tools
  • Research baselines

🚫 Out‑of‑Scope Use

  • Other languages besides Wolaytta
  • High‑stakes deployments without human review
  • Noisy audio without further tuning

⚠️ Risks & Limitations

Performance varies with accents, dialects, and recording quality.

📌 Citation

@misc{w2v_bert_ethiopian_asr,
  author = {Badr M. Abdullah},
  title = {Fine-tuning Wav2Vec2-BERT 2.0 for Ethiopian ASR},
  year = {2025},
  url = {https://huggingface.co/badrex/w2v-bert-2.0-wolaytta-asr}
}