Low-resource Vocabulary Expansion
					Collection
				
Collection of models for "How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?"
					• 
				277 items
				• 
				Updated
					
				
This model is built on top of Llama3 8B adapted for Burmese using 30K target language sentences sampled from CC-100.
Use the code below to get started with the model.
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
    "atsuki-yamaguchi/Llama-3-8B-my-30K-50-align"
)
tokenizer = AutoTokenizer.from_pretrained(
    "atsuki-yamaguchi/Llama-3-8B-my-30K-50-align"
)
@article{yamaguchi-etal-2024-effectively,
    title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?}, 
    author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras},
    year={2024},
    journal={ArXiv},
    year={2024},
    volume={abs/2406.11477},
    url={https://arxiv.org/abs/2406.11477}, 
}
Base model
meta-llama/Meta-Llama-3-8B