Model Composition

  • NurtureAI/neural-chat-7b-v3-16k: Weight - 30%
  • xDAN-AI/xDAN-L1-Chat-RL-v1: Weight - 30%
  • rwitz/go-bruins-v2: Weight - 30%
  • segmed/MedMistral-7B-v0.1: Weight - 10%

Code Snippet for Model Merging

The following Python code demonstrates how to create this mixed model using the LM-Cocktail approach:

from LM_Cocktail import mix_models_by_layers

model = mix_models_by_layers(
    model_names_or_paths=[
        "NurtureAI/neural-chat-7b-v3-16k", 
        "xDAN-AI/xDAN-L1-Chat-RL-v1", 
        "rwitz/go-bruins-v2", 
        "segmed/MedMistral-7B-v0.1"
    ],
    model_type='decoder', 
    weights=[0.3, 0.3, 0.3, 0.1],
    output_path='./mixed_llm'
)

license: apache-2.0

Downloads last month
9
Safetensors
Model size
7B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support