Add/update the quantized ONNX model files and README.md for Transformers.js v3
#3
by
whitphx
HF Staff
- opened
README.md
CHANGED
|
@@ -6,23 +6,22 @@ pipeline_tag: object-detection
|
|
| 6 |
|
| 7 |
https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js.
|
| 8 |
|
| 9 |
-
|
| 10 |
## Usage (Transformers.js)
|
| 11 |
|
| 12 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
| 13 |
```bash
|
| 14 |
-
npm i @
|
| 15 |
```
|
| 16 |
|
| 17 |
**Example:** Perform object-detection with `Xenova/yolov9-e`.
|
| 18 |
|
| 19 |
```js
|
| 20 |
-
import { AutoModel, AutoProcessor, RawImage } from '@
|
| 21 |
|
| 22 |
// Load model
|
| 23 |
const model = await AutoModel.from_pretrained('Xenova/yolov9-e', {
|
| 24 |
-
|
| 25 |
-
})
|
| 26 |
|
| 27 |
// Load processor
|
| 28 |
const processor = await AutoProcessor.from_pretrained('Xenova/yolov9-e');
|
|
@@ -35,12 +34,12 @@ const image = await RawImage.read(url);
|
|
| 35 |
const { pixel_values } = await processor(image);
|
| 36 |
|
| 37 |
// Run object detection
|
| 38 |
-
const { outputs } = await model({ images: pixel_values })
|
| 39 |
const predictions = outputs.tolist();
|
| 40 |
|
| 41 |
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
|
| 42 |
-
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ')
|
| 43 |
-
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`)
|
| 44 |
}
|
| 45 |
// Found "car" at [179.43, 337.57, 399.15, 418.16] with score 0.94.
|
| 46 |
// Found "car" at [447.38, 378.70, 640.22, 477.43] with score 0.93.
|
|
@@ -59,5 +58,4 @@ Test it out [here](https://huggingface.co/spaces/Xenova/yolov9-web)!
|
|
| 59 |
|
| 60 |
---
|
| 61 |
|
| 62 |
-
|
| 63 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
|
| 6 |
|
| 7 |
https://github.com/WongKinYiu/yolov9 with ONNX weights to be compatible with Transformers.js.
|
| 8 |
|
|
|
|
| 9 |
## Usage (Transformers.js)
|
| 10 |
|
| 11 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
| 12 |
```bash
|
| 13 |
+
npm i @huggingface/transformers
|
| 14 |
```
|
| 15 |
|
| 16 |
**Example:** Perform object-detection with `Xenova/yolov9-e`.
|
| 17 |
|
| 18 |
```js
|
| 19 |
+
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers';
|
| 20 |
|
| 21 |
// Load model
|
| 22 |
const model = await AutoModel.from_pretrained('Xenova/yolov9-e', {
|
| 23 |
+
dtype: 'fp32', // (Optional) Use unquantized version.
|
| 24 |
+
});
|
| 25 |
|
| 26 |
// Load processor
|
| 27 |
const processor = await AutoProcessor.from_pretrained('Xenova/yolov9-e');
|
|
|
|
| 34 |
const { pixel_values } = await processor(image);
|
| 35 |
|
| 36 |
// Run object detection
|
| 37 |
+
const { outputs } = await model({ images: pixel_values });
|
| 38 |
const predictions = outputs.tolist();
|
| 39 |
|
| 40 |
for (const [xmin, ymin, xmax, ymax, score, id] of predictions) {
|
| 41 |
+
const bbox = [xmin, ymin, xmax, ymax].map(x => x.toFixed(2)).join(', ');
|
| 42 |
+
console.log(`Found "${model.config.id2label[id]}" at [${bbox}] with score ${score.toFixed(2)}.`);
|
| 43 |
}
|
| 44 |
// Found "car" at [179.43, 337.57, 399.15, 418.16] with score 0.94.
|
| 45 |
// Found "car" at [447.38, 378.70, 640.22, 477.43] with score 0.93.
|
|
|
|
| 58 |
|
| 59 |
---
|
| 60 |
|
|
|
|
| 61 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|