base_model: Delta-Vector/Hamanasu-Magnum-QwQ-32B
datasets:
- NewEden/Orion-LIT
- NewEden/Orion-Asstr-Stories-16K
- Mielikki/Erebus-87k
- NewEden/RP-logs-V2-Experimental-prefixed
- NewEden/Creative_Writing-Complexity
- NewEden/Discord-Filtered
- NewEden/DeepseekRP-Filtered
- NewEden/Storium-Prefixed-Clean
- NewEden/Basket-Weaving-Filtered
- NewEden/LIMARP-Complexity
- NewEden/Misc-Data-Sharegpt-Prefixed
- NewEden/BlueSky-10K-Complexity
- NewEden/OpenCAI-ShareGPT
- NewEden/Basket-Weaving-Filtered
- PocketDoc/Dans-Personamaxx-VN
- PocketDoc/Dans-Kinomaxx-VanillaBackrooms
- PocketDoc/Dans-Personamaxx-Logs
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
- NewEden/Claude-Instruct-5K
- NewEden/Claude-Instruct-2.7K
tags:
- qwen
- roleplay
- finetune
- storywriting
- llama-cpp
- gguf-my-repo
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/jg2NWmCUfPyzizm2USjMt.jpeg
Triangle104/Hamanasu-Magnum-QwQ-32B-Q4_K_M-GGUF
This model was converted to GGUF format from Delta-Vector/Hamanasu-Magnum-QwQ-32B using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
This model is a finetune of Hamanasu-QwQ-V2-RP to replicate the prose of Claude models, Opus and Sonnet. Read more about the model's training on my blog : https://openai-sucks.bearblog.dev/. The model is suited for traditional RP, All thanks to Ruka-Hamanasu for funding the train.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Hamanasu-Magnum-QwQ-32B-Q4_K_M-GGUF --hf-file hamanasu-magnum-qwq-32b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Hamanasu-Magnum-QwQ-32B-Q4_K_M-GGUF --hf-file hamanasu-magnum-qwq-32b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Hamanasu-Magnum-QwQ-32B-Q4_K_M-GGUF --hf-file hamanasu-magnum-qwq-32b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Hamanasu-Magnum-QwQ-32B-Q4_K_M-GGUF --hf-file hamanasu-magnum-qwq-32b-q4_k_m.gguf -c 2048