T2I-Adapter-SDXL - Depth-Zoe
T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint.
This checkpoint provides conditioning on depth for the StableDiffusionXL checkpoint. This was a collaboration between Tencent ARC and Hugging Face.
Model Details
- Developed by: T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models 
- Model type: Diffusion-based text-to-image generation model 
- Language(s): English 
- License: Apache 2.0 
- Resources for more information: GitHub Repository, Paper. 
- Model complexity: - SD-V1.4/1.5 - SD-XL - T2I-Adapter - T2I-Adapter-SDXL - Parameters - 860M - 2.6B - 77 M - 77/79 M 
- Cite as: - @misc{ title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models}, author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie}, year={2023}, eprint={2302.08453}, archivePrefix={arXiv}, primaryClass={cs.CV} } 
Checkpoints
| Model Name | Control Image Overview | Control Image Example | Generated Image Example | 
|---|---|---|---|
| TencentARC/t2i-adapter-canny-sdxl-1.0 Trained with canny edge detection | A monochrome image with white edges on a black background. |  |  | 
| TencentARC/t2i-adapter-sketch-sdxl-1.0 Trained with PidiNet edge detection | A hand-drawn monochrome image with white outlines on a black background. |  |  | 
| TencentARC/t2i-adapter-lineart-sdxl-1.0 Trained with lineart edge detection | A hand-drawn monochrome image with white outlines on a black background. |  |  | 
| TencentARC/t2i-adapter-depth-midas-sdxl-1.0 Trained with Midas depth estimation | A grayscale image with black representing deep areas and white representing shallow areas. |  |  | 
| TencentARC/t2i-adapter-depth-zoe-sdxl-1.0 Trained with Zoe depth estimation | A grayscale image with black representing deep areas and white representing shallow areas. |  |  | 
| TencentARC/t2i-adapter-openpose-sdxl-1.0 Trained with OpenPose bone image | A OpenPose bone image. |  |  | 
Example
To get started, first install the required dependencies:
pip install -U git+https://github.com/huggingface/diffusers.git
pip install -U controlnet_aux==0.0.7 timm==0.6.12 # for conditioning models and detectors
pip install transformers accelerate safetensors
- Images are first downloaded into the appropriate control image format.
- The control image and prompt are passed to the StableDiffusionXLAdapterPipeline.
Let's have a look at a simple example using the Depth-zoe Adapter.
- Dependency
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, EulerAncestralDiscreteScheduler, AutoencoderKL
from diffusers.utils import load_image, make_image_grid
from controlnet_aux import ZoeDetector
import torch
# load adapter
adapter = T2IAdapter.from_pretrained(
  "TencentARC/t2i-adapter-depth-zoe-sdxl-1.0", torch_dtype=torch.float16, varient="fp16"
).to("cuda")
# load euler_a scheduler
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
euler_a = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
    model_id, vae=vae, adapter=adapter, scheduler=euler_a, torch_dtype=torch.float16, variant="fp16", 
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
zoe_depth = ZoeDetector.from_pretrained(
    "valhalla/t2iadapter-aux-models", filename="zoed_nk.pth", model_type="zoedepth_nk"
).to("cuda")
- Condition Image
url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_zeo.jpg"
image = load_image(url)
image = zoe_depth(image, gamma_corrected=True, detect_resolution=512, image_resolution=1024)
- Generation
prompt = "A photo of a orchid, 4k photo, highly detailed"
negative_prompt = "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured"
gen_images = pipe(
  prompt=prompt,
  negative_prompt=negative_prompt,
  image=image,
  num_inference_steps=30,
  adapter_conditioning_scale=1,
  guidance_scale=7.5,  
).images[0]
gen_images.save('out_zoe.png')
Training
Our training script was built on top of the official training script that we provide here.
The model is trained on 3M high-resolution image-text pairs from LAION-Aesthetics V2 with
- Training steps: 25000
- Batch size: Data parallel with a single gpu batch size of 16for a total batch size of256.
- Learning rate: Constant learning rate of 1e-5.
- Mixed precision: fp16
- Downloads last month
- 2,452
