File size: 2,687 Bytes
b470705 1740d5d b470705 6ba4e9d b470705 6ba4e9d b470705 6ba4e9d b470705 6ba4e9d b470705 6ba4e9d b470705 6ba4e9d 1740d5d b470705 1740d5d b470705 1740d5d b470705 1740d5d b470705 09c2a42 6ba4e9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: mit
datasets:
- lennart-finke/SimpleStories
language:
- en
tags:
- small-language-model
- story-generation
- text-generation
- efficient-nlp
- distilled-models
---
# SimpleStories Model Family
The SimpleStories models are a tiny model family created for interpretability research, trained on the [SimpleStories dataset](https://huggingface.co/datasets/lennart-finke/SimpleStories).
## Usage
```python
import torch
from transformers import AutoTokenizer, LlamaForCausalLM
MODEL_SIZE = "11M"
model_path = "SimpleStories/SimpleStories-{}".format(MODEL_SIZE)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path)
model.to("cuda")
model.eval()
prompt = "The curious cat looked at the"
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
input_ids = inputs.input_ids.to("cuda")
eos_token_id = 1
with torch.no_grad():
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=400,
temperature=0.7,
do_sample=True,
eos_token_id=eos_token_id
)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(f"\nGenerated text:\n{output_text}")
```
## Model Variants
| Model Name | n_params | n_layers | d_model | n_heads | n_ctx | d_vocab |
|------------|----------|----------|---------|---------|-------|---------|
| SimpleStories-35M | 35 million | 12 | 512 | 8 | 512 | 4096 |
| SimpleStories-30M | 30 million | 10 | 512 | 8 | 512 | 4096 |
| SimpleStories-11M | 11 million | 6 | 384 | 6 | 512 | 4096 |
| SimpleStories-5M | 5 million | 6 | 256 | 4 | 512 | 4096 |
| SimpleStories-1.25M | 1.25 million | 4 | 128 | 4 | 512 | 4096 |
## Performance Comparison
Model-evaluated generation quality metrics:
<p align="center">
<img width="80%" src="figures/simplestories_comparison.png">
</p>
## Tokenizer
We use a custom WordPiece tokenizer with a small vocabulary size of 4096. We conducted morphological analysis and coverage gain analysis on the dataset
to build a small tokenizer without compromising on the quality of generation.
## Dataset
The SimpleStories dataset is a collection of short stories generated by state-of-the-art language models. It features:
- Story annotation with high-level concepts: theme, topic, style, etc.
- Higher semantic and syntactic diversity through seeded story generation
- Generated by 2024 models
- Several NLP-metrics pre-computed to aid filtering
- ASCII-only guarantee for the English dataset
Read the dataset paper on [arXiv](https://arxiv.org/abs/2504.09184).
## Training
The training and evaluation scripts can be accessed at https://github.com/danbraunai/simple_stories_train
|