Update README.md
Browse files
README.md
CHANGED
|
@@ -17,52 +17,39 @@ The SimpleStories models are a tiny model family created for interpretability re
|
|
| 17 |
|
| 18 |
## Usage
|
| 19 |
|
| 20 |
-
```bash
|
| 21 |
-
pip install simple_stories_train
|
| 22 |
-
```
|
| 23 |
-
|
| 24 |
```python
|
| 25 |
-
from transformers import AutoTokenizer
|
| 26 |
import torch
|
|
|
|
| 27 |
|
| 28 |
-
from simple_stories_train.models.llama import Llama
|
| 29 |
-
from simple_stories_train.models.model_configs import MODEL_CONFIGS
|
| 30 |
-
|
| 31 |
-
# Select the model size you want to use
|
| 32 |
-
model_size = "11M" # Options: "35M", "30M", "11M", "5M", "1.25M"
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
model
|
| 40 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
|
| 41 |
-
model.to(device)
|
| 42 |
model.eval()
|
| 43 |
|
| 44 |
-
# Load tokenizer
|
| 45 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 46 |
|
| 47 |
-
# Define your prompt
|
| 48 |
prompt = "The curious cat looked at the"
|
| 49 |
|
| 50 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 51 |
-
input_ids = inputs.input_ids.to(device)
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
with torch.no_grad():
|
| 55 |
output_ids = model.generate(
|
| 56 |
-
|
| 57 |
-
max_new_tokens=
|
| 58 |
-
temperature=0.
|
| 59 |
-
|
| 60 |
-
eos_token_id=
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# Decode output
|
| 64 |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 65 |
-
print(f"
|
| 66 |
|
| 67 |
```
|
| 68 |
|
|
@@ -99,3 +86,7 @@ The SimpleStories dataset is a collection of short stories generated by state-of
|
|
| 99 |
- ASCII-only guarantee for the English dataset
|
| 100 |
|
| 101 |
Read the dataset paper on [arXiv](https://arxiv.org/abs/2504.09184).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Usage
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
```python
|
|
|
|
| 21 |
import torch
|
| 22 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
MODEL_SIZE = "11M"
|
| 26 |
+
model_path = "SimpleStories/SimpleStories-{}".format(MODEL_SIZE)
|
| 27 |
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 29 |
+
model = LlamaForCausalLM.from_pretrained(model_path)
|
| 30 |
+
model.to("cuda")
|
|
|
|
|
|
|
| 31 |
model.eval()
|
| 32 |
|
|
|
|
|
|
|
| 33 |
|
|
|
|
| 34 |
prompt = "The curious cat looked at the"
|
| 35 |
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
| 38 |
+
input_ids = inputs.input_ids.to("cuda")
|
| 39 |
+
|
| 40 |
+
eos_token_id = 1
|
| 41 |
+
|
| 42 |
with torch.no_grad():
|
| 43 |
output_ids = model.generate(
|
| 44 |
+
input_ids=input_ids,
|
| 45 |
+
max_new_tokens=400,
|
| 46 |
+
temperature=0.7,
|
| 47 |
+
do_sample=True,
|
| 48 |
+
eos_token_id=eos_token_id
|
| 49 |
+
)
|
| 50 |
+
|
|
|
|
| 51 |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 52 |
+
print(f"\nGenerated text:\n{output_text}")
|
| 53 |
|
| 54 |
```
|
| 55 |
|
|
|
|
| 86 |
- ASCII-only guarantee for the English dataset
|
| 87 |
|
| 88 |
Read the dataset paper on [arXiv](https://arxiv.org/abs/2504.09184).
|
| 89 |
+
|
| 90 |
+
## Training
|
| 91 |
+
|
| 92 |
+
The training and evaluation scripts can be accessed at https://github.com/danbraunai/simple_stories_train
|