wav2vec2-base-960h-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7067
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.3013 0.9912 56 2.2907 0.12
2.247 2.0 113 2.1508 0.31
2.025 2.9912 169 1.8583 0.44
1.8441 4.0 226 1.5589 0.49
1.6488 4.9912 282 1.5304 0.43
1.6473 6.0 339 1.4225 0.53
1.3746 6.9912 395 1.3659 0.6
1.2692 8.0 452 1.3538 0.49
1.0924 8.9912 508 1.3275 0.59
0.9971 10.0 565 1.1256 0.6
1.0647 10.9912 621 0.8908 0.71
0.8927 12.0 678 1.0522 0.71
0.764 12.9912 734 0.8975 0.72
0.7493 14.0 791 1.2048 0.68
0.606 14.9912 847 0.6913 0.81
0.5683 16.0 904 0.7876 0.75
0.5753 16.9912 960 0.6032 0.84
0.4177 18.0 1017 0.7026 0.82
0.369 18.9912 1073 0.6930 0.84
0.2902 20.0 1130 1.0089 0.81
0.2566 20.9912 1186 0.7876 0.84
0.2661 22.0 1243 0.5696 0.89
0.146 22.9912 1299 0.7424 0.85
0.1522 24.0 1356 0.6972 0.86
0.1315 24.7788 1400 0.7067 0.87

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SiMenz/wav2vec2-base-960h-finetuned-gtzan

Finetuned
(169)
this model

Dataset used to train SiMenz/wav2vec2-base-960h-finetuned-gtzan

Evaluation results