|
|
--- |
|
|
datasets: |
|
|
- IPEC-COMMUNITY/libero_10_no_noops_1.0.0_lerobot |
|
|
base_model: |
|
|
- nvidia/Eagle2-2B |
|
|
--- |
|
|
# Model Card for InstructVLA LIBERO-10 |
|
|
|
|
|
- checkpoints: the model in `.pt` format |
|
|
|
|
|
- eval: the evaluation results with 3 random seeds |
|
|
|
|
|
- dataset_statistics.json: the normalization statistics for the dataset |
|
|
|
|
|
## Evaluation: |
|
|
|
|
|
|
|
|
```bash |
|
|
|
|
|
#!/bin/bash |
|
|
|
|
|
CKPT_LIST=( |
|
|
"path/to/checkpoints/step-039000-epoch-192-loss=0.0263.pt" |
|
|
) |
|
|
|
|
|
# Loop over the checkpoint list and GPUs |
|
|
for i in "${!CKPT_LIST[@]}"; do |
|
|
GPU_ID=$((i % 8)) # Cycle through GPUs 0-7 |
|
|
CHECKPOINT="${CKPT_LIST[$i]}" |
|
|
|
|
|
# Run the evaluation script for each checkpoint and GPU |
|
|
CUDA_VISIBLE_DEVICES=$GPU_ID python deploy/libero/run_libero_eval.py \ |
|
|
--model_family instruct_vla \ |
|
|
--pretrained_checkpoint "$CHECKPOINT" \ |
|
|
--task_suite_name libero_10 \ |
|
|
--local_log_dir Libero/release_ensemble \ |
|
|
--use_length -1 \ |
|
|
--center_crop True & |
|
|
|
|
|
# --use_length == -1 : execute the ensembled action |
|
|
# --use_length >= 1 : execute action_chunk[0:use_length] |
|
|
# For this checkpoint, you should use action ensemble. |
|
|
|
|
|
sleep 5 |
|
|
done |
|
|
|
|
|
# Wait for all background jobs to finish |
|
|
wait |
|
|
|
|
|
``` |