Update README.md
Browse files
README.md
CHANGED
|
@@ -17,4 +17,46 @@ tags:
|
|
| 17 |
**Evaluation Results**
|
| 18 |
|
| 19 |
* `results_step-006000-epoch-01-loss=0.1724_instruct_cot_2-3`: Results on **SimplerEnv-Instruct** with multimodal reasoning.
|
| 20 |
-
* `results_step-006000-epoch-01-loss=0.1724_simpler_1-3`: Results on **SimplerEnv**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
**Evaluation Results**
|
| 18 |
|
| 19 |
* `results_step-006000-epoch-01-loss=0.1724_instruct_cot_2-3`: Results on **SimplerEnv-Instruct** with multimodal reasoning.
|
| 20 |
+
* `results_step-006000-epoch-01-loss=0.1724_simpler_1-3`: Results on **SimplerEnv**.
|
| 21 |
+
* `vlmeval`: Multimodal performance
|
| 22 |
+
|
| 23 |
+
This checkpoint supports dialogue, please check our [Code](https://github.com/InternRobotics/InstructVLA#evaluation)
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
|
| 27 |
+
import torch
|
| 28 |
+
from vla.instructvla_eagle_dual_sys_v2_meta_query_v2 import load, load_vla
|
| 29 |
+
from PIL import Image
|
| 30 |
+
import numpy as np
|
| 31 |
+
|
| 32 |
+
model_path = 'outputs/release_ckpts/instructvla_finetune_v2_xlora_freeze_head_instruction--image_aug/checkpoints/step-013500-epoch-01-loss=0.1093.pt'
|
| 33 |
+
|
| 34 |
+
# Load Stage-2 (Generalist) model
|
| 35 |
+
model = load_vla(model_path, stage="stage2").eval().to(torch.bfloat16).cuda()
|
| 36 |
+
|
| 37 |
+
messages = [
|
| 38 |
+
{"content": "You are a helpful assistant."}, # system
|
| 39 |
+
{
|
| 40 |
+
"role": "user",
|
| 41 |
+
"content": "Can you describe the main idea of this image?",
|
| 42 |
+
"image": [{'np_array': np.asarray(Image.open("./asset/teaser.png"))}]
|
| 43 |
+
}
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
# Preprocess input
|
| 47 |
+
inputs = model.processor.prepare_input(dict(prompt=messages))
|
| 48 |
+
autocast_dtype = torch.bfloat16
|
| 49 |
+
|
| 50 |
+
with torch.autocast("cuda", dtype=autocast_dtype, enabled=True):
|
| 51 |
+
output = model.vlm.generate(
|
| 52 |
+
input_ids=inputs['input_ids'].cuda(),
|
| 53 |
+
attention_mask=inputs['attention_mask'].cuda(),
|
| 54 |
+
pixel_values=inputs['pixel_values'].cuda(),
|
| 55 |
+
max_new_tokens=200,
|
| 56 |
+
output_hidden_states=False,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
response = model.processor.tokenizer.decode(output[0])
|
| 60 |
+
print(response)
|
| 61 |
+
|
| 62 |
+
```
|