SentenceTransformer based on cointegrated/rubert-tiny2
This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/rubert-tiny2
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Беговая дорожка Hasttings CT100 Главная Беговые дорожки Беговая дорожка Hasttings CT100',
'Беговая дорожка AMMITY SPACE ATM 5000 Главная Беговые дорожки Бренды',
'Беговая дорожка ProForm 910 Беговые дорожки ProForm ProForm 910',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
1.0 |
| cosine_accuracy_threshold |
0.7241 |
| cosine_f1 |
1.0 |
| cosine_f1_threshold |
0.7241 |
| cosine_precision |
1.0 |
| cosine_recall |
1.0 |
| cosine_ap |
1.0 |
| dot_accuracy |
1.0 |
| dot_accuracy_threshold |
0.7241 |
| dot_f1 |
1.0 |
| dot_f1_threshold |
0.7241 |
| dot_precision |
1.0 |
| dot_recall |
1.0 |
| dot_ap |
1.0 |
| manhattan_accuracy |
1.0 |
| manhattan_accuracy_threshold |
9.0554 |
| manhattan_f1 |
1.0 |
| manhattan_f1_threshold |
9.0554 |
| manhattan_precision |
1.0 |
| manhattan_recall |
1.0 |
| manhattan_ap |
1.0 |
| euclidean_accuracy |
1.0 |
| euclidean_accuracy_threshold |
0.6519 |
| euclidean_f1 |
1.0 |
| euclidean_f1_threshold |
0.6519 |
| euclidean_precision |
1.0 |
| euclidean_recall |
1.0 |
| euclidean_ap |
1.0 |
| max_accuracy |
1.0 |
| max_accuracy_threshold |
9.0554 |
| max_f1 |
1.0 |
| max_f1_threshold |
9.0554 |
| max_precision |
1.0 |
| max_recall |
1.0 |
| max_ap |
1.0 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
num_train_epochs: 10
warmup_ratio: 0.1
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
eval_use_gather_object: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
cv_max_ap |
| 0 |
0 |
- |
- |
0.7655 |
| 1.0 |
428 |
- |
0.0056 |
1.0 |
| 1.1682 |
500 |
0.0078 |
- |
- |
| 2.0 |
856 |
- |
0.0015 |
1.0 |
| 2.3364 |
1000 |
0.0019 |
- |
- |
| 3.0 |
1284 |
- |
0.0011 |
1.0 |
| 3.5047 |
1500 |
0.0013 |
- |
- |
| 4.0 |
1712 |
- |
0.0007 |
1.0 |
| 4.6729 |
2000 |
0.001 |
- |
- |
| 5.0 |
2140 |
- |
0.0004 |
1.0 |
| 5.8411 |
2500 |
0.0008 |
- |
- |
| 6.0 |
2568 |
- |
0.0002 |
1.0 |
| 7.0 |
2996 |
- |
0.0002 |
1.0 |
| 7.0093 |
3000 |
0.0007 |
- |
- |
| 8.0 |
3424 |
- |
0.0001 |
1.0 |
| 8.1776 |
3500 |
0.0006 |
- |
- |
| 9.0 |
3852 |
- |
0.0001 |
1.0 |
| 9.3458 |
4000 |
0.0005 |
- |
- |
| 10.0 |
4280 |
- |
0.0001 |
1.0 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}