Setosm's picture
Update README.md
203f6b3 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - medical-ner
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-finetuned-for-medical-ner
    results: []

bert-finetuned-for-medical-ner

This model is a fine-tuned version of google-bert/bert-base-uncased on the PLODv2-filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1344
  • Accuracy: 0.9402
  • Precision: 0.8342
  • Recall: 0.9029
  • F1: 0.8672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2039 0.1420 2000 0.1873 0.9244 0.7841 0.8773 0.8281
0.1758 0.2841 4000 0.1613 0.9302 0.8028 0.8920 0.8451
0.1585 0.4261 6000 0.1499 0.9343 0.8309 0.8721 0.8510
0.1613 0.5681 8000 0.1460 0.9358 0.8400 0.8655 0.8526
0.1526 0.7101 10000 0.1402 0.9382 0.8329 0.8930 0.8619
0.1502 0.8522 12000 0.1357 0.9394 0.8346 0.8985 0.8654
0.1486 0.9942 14000 0.1344 0.9402 0.8342 0.9029 0.8672

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1