You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

TinyLlama-UserValidation-Finetune

This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 for user detail validation tasks.

Model Description

  • Base Model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
  • Fine-tuning Task: User detail validation
  • Training Method: LoRA (Low-Rank Adaptation)
  • Dataset: Custom validation dataset

Validation Rules

The model validates user details based on these rules:

  • Name: Must start with uppercase letter
  • Blood Group: Must be uppercase (A+, B+, AB+, O+, A-, B-, AB-, O-)
  • Pincode: Must be exactly 6 digits
  • City: Must start with uppercase letter
  • Address: Any valid address format

Usage

Direct Usage with Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "SaJiThrenalin/TinyLlama-UserValidation-Finetune"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Format your input
prompt = "Validate the user details."
user_input = "Name: john\nBlood Group: o+\nAddress: 123 Street\nPincode: 12345\nCity: mumbai"
full_prompt = f"<s>[INST] {prompt}: {user_input} [/INST]"

# Generate response
inputs = tokenizer(full_prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response.split("[/INST]")[-1].strip())

API Usage

import requests

API_URL = "https://api-inference.huggingface.co/models/SaJiThrenalin/TinyLlama-UserValidation-Finetune"
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}

def validate_user_details(user_details):
    prompt = f"<s>[INST] Validate the user details.: {user_details} [/INST]"
    
    payload = {
        "inputs": prompt,
        "parameters": {
            "max_new_tokens": 100,
            "temperature": 0.7,
            "do_sample": True
        }
    }
    
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Example usage
user_data = "Name: john\nBlood Group: o+\nAddress: 123 Street\nPincode: 12345\nCity: mumbai"
result = validate_user_details(user_data)
print(result)

Input Format

Name: [User Name]
Blood Group: [Blood Group]
Address: [User Address]
Pincode: [6-digit pincode]
City: [City Name]

Output Format

Validation Result: [X] passed, [Y] failed. [Detailed feedback]

Example

Input:

Name: john
Blood Group: o+
Address: 123 Street
Pincode: 12345
City: mumbai

Output:

Validation Result: 1 passed, 4 failed. Name should start with uppercase. Blood Group should be uppercase. Pincode must be 6 digits. City should start with uppercase.
Downloads last month
5
Safetensors
Model size
1B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for SaJiThrenalin/TinyLlama-UserValidation-Finetune

Finetuned
(448)
this model