🌸 SEA Model series Op.0: Saint Iberis d20 (Parameters: 542M)
This repository employs a module called SLC2, inspired by Liquid Time-Constant Networks (LTCs) and Liquid Foundation Models (LFM2), to enable faster training and inference for nanochat. The SEA Model series Op.0: Saint Iberis achieves comparable performance while reducing training time by more than 30 minutes and lowering computational costs by over $10. You are free to use the model from the repository below.
このリポジトリはnanochatをより高速に学習・推論するために、LTCsおよびLFM2から着想を得たSLC2というモジュールを使用しています。 SEA Model series Op.0: Saint Iberisは元のnanoGPTと比較して学習時間を30分以上、$10以上のコストを削減しながら、同等の性能を達成することが可能です。 モデルは下記リポジトリからご自由に利用できます。
Ripository: Liquid_Time_nanochat
🌸 Saint Iberis Architecture
| Property | Saint Iberis d20 | Remarks |
|---|---|---|
| Total parameters | 542,035,200 (542M) | n_layer: 20, n_head: 10, n_kv_head: 10, n_embd: 1280 |
| Layers | 20 (13 slc2 + 7 attn) | attn layers: 1, 4, 7, 10, 13, 16, 19 |
| Vocabulary size | 65,536 | - |
| License | MIT | - |
🌸 SLC2 Formulation
y = B ⋅ ∏ᵢ₌ⱼ⁽ʲ⁺ᵏ⁾ Aᵢ ⋅ xᵢ
🌸 SLC2 pseudo code
----------------------------------------
Algorithm: SLC2
----------------------------------------
Input: x: (B, S, E)
Output: y: (B, S, E)
1: alpha, A, B, x₁ <- Linear(x)
2: x₂: (B, S, E) <- Convolution1D(E, E)(SiLU(alpha)*A*x₁)
3: x₃: (B, S, E) <- B*SiLU(x₂)
4: y: (B, S, E) <- Linear(x₃)
5: return y
----------------------------------------
🌸 Performance
| Metric | BASE | MID | SFT | RL |
|---|---|---|---|---|
| CORE | 0.1796 | - | - | - |
| ARC-Challenge | - | 0.2910 | 0.2782 | - |
| ARC-Easy | - | 0.3792 | 0.3864 | - |
| GSM8K | - | 0.0341 | 0.0455 | - |
| HumanEval | - | 0.0732 | 0.0549 | - |
| MMLU | - | 0.3146 | 0.3166 | - |
| ChatCORE | - | 0.2348 | 0.2322 | - |
| Total wall clock time: 3h15m |
🌸 Comparison with nanoGPT
| Metric | GPT(karpathy/nanochat) | Saint Iberis |
|---|---|---|
| Total wall clock time | 3h51m | 3h15m |
| ARC-Challenge | 0.2807 | 0.2782 |
| ARC-Easy | 0.3876 | 0.3864 |
| HumanEval | 0.0854 | 0.0549 |
| MMLU | 0.3151 | 0.3166 |
| ChatCORE | 0.0844 | 0.2322 |
| Task Average | 0.1998 | 0.2190 |
🌸 Training result
Base Training
- Minimum validation bpb: 0.8287
- Final validation bpb: 0.8287
Mid Training
- Minimum validation bpb: 0.4116
SFT Training
- Training loss: 0.5825
- Validation loss: 1.0657
🌸 Usage
install the ripository:
git clone https://github.com/Rikka-Botan/Liquid_Time_nanochat.git
Then, you can run this inference snippet:
import os
import sys
import torch
import json
import time
from huggingface_hub import hf_hub_download
if not os.path.exists("Liquid_Time_nanochat"):
os.system("git clone https://github.com/Rikka-Botan/Liquid_Time_nanochat")
os.chdir("Liquid_Time_nanochat")
sys.path.append(os.getcwd())
from nanochat.gpt import GPT, GPTConfig
from nanochat.tokenizer import RustBPETokenizer
repo_id = "RikkaBotan/nanochat_d20_saint_iberis"
model_file = "model_000700.pt"
meta_file = "meta_000700.json"
tokenizer_file = "tokenizer.pkl"
local_pt_path = hf_hub_download(repo_id=repo_id, filename=model_file)
local_meta_path = hf_hub_download(repo_id=repo_id, filename=meta_file)
local_tokenizer_path = hf_hub_download(repo_id=repo_id, filename=tokenizer_file, local_dir=os.getcwd())
with open(local_meta_path, "r", encoding="utf-8") as f:
meta_data = json.load(f)
model_config = GPTConfig(**meta_data["model_config"])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = GPT(model_config).to(device)
state_dict = torch.load(local_pt_path, map_location=device)
state_dict = {k.removeprefix("_orig_mod."): v for k, v in state_dict.items()}
model.load_state_dict(state_dict, strict=True)
model.eval()
tokenizer = RustBPETokenizer.from_directory(os.getcwd())
try:
tokenizer.bos_token_id = tokenizer.enc.encode_single_token("<|bos|>")
except KeyError:
tokenizer.bos_token_id = tokenizer.enc.encode_single_token("<|endoftext|>")
tokenizer.user_start_id = tokenizer.enc.encode_single_token("<|user_start|>")
tokenizer.user_end_id = tokenizer.enc.encode_single_token("<|user_end|>")
tokenizer.assistant_start_id = tokenizer.enc.encode_single_token("<|assistant_start|>")
tokenizer.assistant_end_id = tokenizer.enc.encode_single_token("<|assistant_end|>")
tokenizer.stop_tokens = {tokenizer.assistant_end_id, tokenizer.bos_token_id}
def format_conversation(tokenizer, history):
tokens = [tokenizer.bos_token_id]
for message in history:
role = message["role"]
content = message["content"]
content_tokens = tokenizer.encode(content)
if role == "user":
tokens.extend([tokenizer.user_start_id, *content_tokens, tokenizer.user_end_id])
elif role == "assistant":
tokens.extend([tokenizer.assistant_start_id, *content_tokens, tokenizer.assistant_end_id])
tokens.append(tokenizer.assistant_start_id)
return tokens
def generate_reply(prompt, conv_history, temperature=0.7, top_k=20, top_p=0.8,
repetition_penalty=1.15, max_new_tokens=64):
conv_history.append({"role": "user", "content": prompt})
tokens = format_conversation(tokenizer, conv_history)
input_ids = torch.tensor(tokens, dtype=torch.long).unsqueeze(0).to(device)
stream = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
buffer_text = ""
for token_id in stream:
text_piece = tokenizer.decode([token_id])
if text_piece == "<|assistant_end|>":
break
buffer_text += text_piece
conv_history.append({"role": "assistant", "content": buffer_text})
return buffer_text
if __name__ == "__main__":
print("🌸 NanoChat - Saint Iberis CLI")
print("Type 'exit' to quit.\n")
conv_history = []
while True:
prompt = input("You: ")
if prompt.lower() in {"exit", "quit"}:
print("Goodbye!")
break
reply = generate_reply(prompt, conv_history)
print(f"AI: {reply}\n")
🌸 Acknowledgments
I thank Andrej Karpathy's fullstack llm project to build an LLM, nanochat.
I thank the developers of python and pytorch.
I thank all the researchers for their efforts to date.
I thank Japan's high standard of education.
And most of all, thank you for your interest in this repository.
🌸 About us
Japanese independent researcher having shy and pampered personality. Twin-tail hair is a charm point. Interested in nlp. Usually using python and C.
Datasets used to train RikkaBotan/nanochat_d20_saint_iberis
Space using RikkaBotan/nanochat_d20_saint_iberis 1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set nanochat27.820
- normalized accuracy on AI2 Reasoning Easy (25-Shot)test set nanochat38.640
- accuracy on MMLU (5-Shot)test set nanochat31.660
- accuracy on GSM8k (5-shot)test set nanochat4.550
- pass@1 on HumanEvaltest set nanochat5.490
- ChatCORE metric on ChatCOREtest set nanochat23.220


