YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

FILM-7B - GGUF

Name Quant method Size
FILM-7B.Q2_K.gguf Q2_K 2.53GB
FILM-7B.IQ3_XS.gguf IQ3_XS 2.81GB
FILM-7B.IQ3_S.gguf IQ3_S 2.96GB
FILM-7B.Q3_K_S.gguf Q3_K_S 2.95GB
FILM-7B.IQ3_M.gguf IQ3_M 3.06GB
FILM-7B.Q3_K.gguf Q3_K 3.28GB
FILM-7B.Q3_K_M.gguf Q3_K_M 3.28GB
FILM-7B.Q3_K_L.gguf Q3_K_L 3.56GB
FILM-7B.IQ4_XS.gguf IQ4_XS 3.67GB
FILM-7B.Q4_0.gguf Q4_0 3.83GB
FILM-7B.IQ4_NL.gguf IQ4_NL 3.87GB
FILM-7B.Q4_K_S.gguf Q4_K_S 3.86GB
FILM-7B.Q4_K.gguf Q4_K 4.07GB
FILM-7B.Q4_K_M.gguf Q4_K_M 4.07GB
FILM-7B.Q4_1.gguf Q4_1 4.24GB
FILM-7B.Q5_0.gguf Q5_0 4.65GB
FILM-7B.Q5_K_S.gguf Q5_K_S 4.65GB
FILM-7B.Q5_K.gguf Q5_K 4.78GB
FILM-7B.Q5_K_M.gguf Q5_K_M 4.78GB
FILM-7B.Q5_1.gguf Q5_1 5.07GB
FILM-7B.Q6_K.gguf Q6_K 5.53GB
FILM-7B.Q8_0.gguf Q8_0 7.17GB

Original model description:

license: apache-2.0 language: - en

FILM-7B

πŸ’» [Github Repo] β€’ πŸ“ƒ [Paper] β€’ βš“ [VaLProbing-32K]

FILM-7B is a 32K-context LLM that overcomes the lost-in-the-middle problem. It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training. FILM-7B achieves near-perfect performance on probing tasks, SOTA-level performance on real-world long-context tasks among ~7B size LLMs, and does not compromise the short-context performance.

Model Usage

The system tempelate for FILM-7B:

'''[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.

### Context:
{YOUR LONG CONTEXT}

### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
'''

Probing Results

To reproduce the results on our VaL Probing, see the guidance in https://github.com/microsoft/FILM/tree/main/VaLProbing.


Real-World Long-Context Tasks

To reproduce the results on real-world long-context tasks, see the guidance in https://github.com/microsoft/FILM/tree/main/real_world_long.


Short-Context Tasks

To reproduce the results on short-context tasks, see the guidance in https://github.com/microsoft/FILM/tree/main/short_tasks.


πŸ“ Citation

@misc{an2024make,
      title={Make Your LLM Fully Utilize the Context}, 
      author={Shengnan An and Zexiong Ma and Zeqi Lin and Nanning Zheng and Jian-Guang Lou},
      year={2024},
      eprint={2404.16811},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Disclaimer: This model is strictly for research purposes, and not an official product or service from Microsoft.

Downloads last month
241
GGUF
Model size
7B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support