Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
  
  
Model Overview
- Model Architecture: Mistral3ForConditionalGeneration
- Input: Text / Image
 - Output: Text
 
 - Model Optimizations:
- Weight quantization: INT4
 
 - Intended Use Cases: It is ideal for:
- Fast-response conversational agents.
 - Low-latency function calling.
 - Subject matter experts via fine-tuning.
 - Local inference for hobbyists and organizations handling sensitive data.
 - Programming and math reasoning.
 - Long document understanding.
 - Visual understanding.
 
 - Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
 - Release Date: 04/15/2025
 - Version: 1.0
 - Validated on: RHOAI 2.20, RHAIIS 3.0, RHELAI 1.5
 - Model Developers: Red Hat (Neural Magic)
 
Model Optimizations
This model was obtained by quantizing the weights of Mistral-Small-3.1-24B-Instruct-2503 to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 128. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.
Deployment
- Initialize vLLM server:
 
vllm serve RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 --tensor_parallel_size 1 --tokenizer_mode mistral
- Send requests to the server:
 
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)
model = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16"
messages = [
    {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
    model=model,
    messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Deploy on Red Hat AI Inference Server
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
 --ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768  \
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
See Red Hat AI Inference Server documentation for more details.
Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16
  
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16
See Red Hat Enterprise Linux AI documentation for more details.
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
 name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
 annotations:
   openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
   opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
 labels:
   opendatahub.io/dashboard: 'true'
spec:
 annotations:
   prometheus.io/port: '8080'
   prometheus.io/path: '/metrics'
 multiModel: false
 supportedModelFormats:
   - autoSelect: true
     name: vLLM
 containers:
   - name: kserve-container
     image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
     command:
       - python
       - -m
       - vllm.entrypoints.openai.api_server
     args:
       - "--port=8080"
       - "--model=/mnt/models"
       - "--served-model-name={{.Name}}"
     env:
       - name: HF_HOME
         value: /tmp/hf_home
     ports:
       - containerPort: 8080
         protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  annotations:
    openshift.io/display-name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16 # OPTIONAL CHANGE
    serving.kserve.io/deploymentMode: RawDeployment
  name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16       # specify model name. This value will be used to invoke the model in the payload
  labels:
    opendatahub.io/dashboard: 'true'
spec:
  predictor:
    maxReplicas: 1
    minReplicas: 1
    model:
      modelFormat:
        name: vLLM
      name: ''
      resources:
        limits:
          cpu: '2'			# this is model specific
          memory: 8Gi		# this is model specific
          nvidia.com/gpu: '1'	# this is accelerator specific
        requests:			# same comment for this block
          cpu: '1'
          memory: 4Gi
          nvidia.com/gpu: '1'
      runtime: vllm-cuda-runtime	# must match the ServingRuntime name above
      storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5
    tolerations:
    - effect: NoSchedule
      key: nvidia.com/gpu
      operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
        -H "Content-Type: application/json" \
        -d '{
    "model": "mistral-small-3-1-24b-instruct-2503-quantized-w4a16",
    "stream": true,
    "stream_options": {
        "include_usage": true
    },
    "max_tokens": 1,
    "messages": [
        {
            "role": "user",
            "content": "How can a bee fly when its wings are so small?"
        }
    ]
}'
See Red Hat Openshift AI documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration
from datasets import load_dataset, interleave_datasets
from PIL import Image
import io
# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
num_text_samples = 1024
num_vision_samples = 1024
max_seq_len = 8192
processor = AutoProcessor.from_pretrained(model_stub)
model = TraceableMistral3ForConditionalGeneration.from_pretrained(
    model_stub,
    device_map="auto",
    torch_dtype="auto",
)
# Text-only data subset
def preprocess_text(example):
    input = {
        "text": processor.apply_chat_template(
            example["messages"],
            add_generation_prompt=False,
        ),
        "images": None,
    }
    tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
    tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
    tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
    return tokenized_input
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples))
dst = dst.map(preprocess_text, remove_columns=dst.column_names)
# Text + vision data subset
def preprocess_vision(example):
    messages = []
    image = None
    for message in example["messages"]:
        message_content = []
        for content in message["content"]:
            if content["type"] == "text":
                message_content.append({"type": "text", "text": content["text"]})
            else:
                message_content.append({"type": "image"})
                image = Image.open(io.BytesIO(content["image"]))
        messages.append(
            {
                "role": message["role"],
                "content": message_content,
            }
        )
    input = {
        "text": processor.apply_chat_template(
            messages,
            add_generation_prompt=False,
        ),
        "images": image,
    }
    tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
    tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
    tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
    return tokenized_input
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples))
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names)
# Interleave subsets
ds = interleave_datasets((dsv, dst))
# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
    ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    sequential_targets=["MistralDecoderLayer"],
    dampening_frac=0.01,
    targets="Linear",
    scheme="W4A16",
)
# Define data collator
def data_collator(batch):
    import torch
    assert len(batch) == 1
    collated = {}
    for k, v in batch[0].items():
        if v is None:
            continue
        if k == "input_ids":
            collated[k] = torch.LongTensor(v)
        elif k == "pixel_values":
            collated[k] = torch.tensor(v, dtype=torch.bfloat16)
        else:
            collated[k] = torch.tensor(v)
    return collated
# Apply quantization
oneshot(
    model=model,
    dataset=ds, 
    recipe=recipe,
    max_seq_length=max_seq_len,
    data_collator=data_collator,
    num_calibration_samples=num_text_samples + num_vision_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP. Non-coding tasks were evaluated with lm-evaluation-harness, whereas coding tasks were evaluated with a fork of evalplus. vLLM is used as the engine in all cases.
Evaluation details
MMLU
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks mmlu \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
ARC Challenge
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks arc_challenge \
  --num_fewshot 25 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
GSM8k
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks gsm8k \
  --num_fewshot 8 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
Hellaswag
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks hellaswag \
  --num_fewshot 10 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
Winogrande
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks winogrande \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
TruthfulQA
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks truthfulqa \
  --num_fewshot 0 \
  --apply_chat_template\
  --batch_size auto
MMLU-pro
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks mmlu_pro \
  --num_fewshot 5 \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
MMMU
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks mmmu_val \
  --apply_chat_template\
  --batch_size auto
ChartQA
lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
  --tasks chartqa \
  --apply_chat_template\
  --batch_size auto
Coding
The commands below can be used for mbpp by simply replacing the dataset name.
Generation
python3 codegen/generate.py \
  --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2-sanitized
Accuracy
| Category | Benchmark | Mistral-Small-3.1-24B-Instruct-2503 | Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 (this model)  | 
   Recovery | 
|---|---|---|---|---|
| OpenLLM v1 | MMLU (5-shot) | 80.67 | 79.74 | 98.9% | 
| ARC Challenge (25-shot) | 72.78 | 72.18 | 99.2% | |
| GSM-8K (5-shot, strict-match) | 58.68 | 59.59 | 101.6% | |
| Hellaswag (10-shot) | 83.70 | 83.25 | 99.5% | |
| Winogrande (5-shot) | 83.74 | 83.43 | 99.6% | |
| TruthfulQA (0-shot, mc2) | 70.62 | 69.56 | 98.5% | |
| Average | 75.03 | 74.63 | 99.5% | |
| MMLU-Pro (5-shot) | 67.25 | 66.56 | 99.0% | |
| GPQA CoT main (5-shot) | 42.63 | 47.10 | 110.5% | |
| GPQA CoT diamond (5-shot) | 45.96 | 44.95 | 97.80% | |
| Coding | HumanEval pass@1 | 84.70 | 84.60 | 99.9% | 
| HumanEval+ pass@1 | 79.50 | 79.90 | 100.5% | |
| MBPP pass@1 | 71.10 | 70.10 | 98.6% | |
| MBPP+ pass@1 | 60.60 | 60.70 | 100.2% | |
| Vision | MMMU (0-shot) | 52.11 | 50.11 | 96.2% | 
| ChartQA (0-shot) | 81.36 | 80.92 | 99.5% | |
- Downloads last month
 - 246,525
 
Model tree for RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503