Update tokenization_rwkv5.py
Browse files- tokenization_rwkv5.py +11 -242
tokenization_rwkv5.py
CHANGED
|
@@ -15,238 +15,8 @@
|
|
| 15 |
"""Tokenization classes for RWKV5."""
|
| 16 |
|
| 17 |
import os
|
| 18 |
-
from typing import TYPE_CHECKING, List, Optional, Tuple
|
| 19 |
import re
|
| 20 |
-
|
| 21 |
-
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 22 |
-
from transformers.utils import logging
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
if TYPE_CHECKING:
|
| 26 |
-
pass
|
| 27 |
-
|
| 28 |
-
logger = logging.get_logger(__name__)
|
| 29 |
-
|
| 30 |
-
VOCAB_FILES_NAMES = {
|
| 31 |
-
"vocab_file": "vocab.txt",
|
| 32 |
-
}
|
| 33 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
| 34 |
-
"vocab_file": {
|
| 35 |
-
"ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
|
| 36 |
-
},
|
| 37 |
-
}
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def whitespace_tokenize(text):
|
| 42 |
-
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 43 |
-
The separators are kept
|
| 44 |
-
"""
|
| 45 |
-
text = text.strip()
|
| 46 |
-
if not text:
|
| 47 |
-
return []
|
| 48 |
-
tokens = re.split(b"(?= )", text)
|
| 49 |
-
return tokens
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class WordpieceTokenizer(object):
|
| 53 |
-
"""Runs WordPiece tokenization."""
|
| 54 |
-
|
| 55 |
-
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
| 56 |
-
self.vocab = vocab
|
| 57 |
-
self.unk_token = unk_token
|
| 58 |
-
self.max_input_chars_per_word = max_input_chars_per_word
|
| 59 |
-
|
| 60 |
-
def tokenize(self, text):
|
| 61 |
-
"""
|
| 62 |
-
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
| 63 |
-
tokenization using the given vocabulary.
|
| 64 |
-
|
| 65 |
-
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
| 66 |
-
|
| 67 |
-
Args:
|
| 68 |
-
text: A single token or whitespace separated tokens. This should have
|
| 69 |
-
already been passed through *BasicTokenizer*.
|
| 70 |
-
|
| 71 |
-
Returns:
|
| 72 |
-
A list of wordpiece tokens.
|
| 73 |
-
"""
|
| 74 |
-
|
| 75 |
-
output_tokens = []
|
| 76 |
-
for token in whitespace_tokenize(text):
|
| 77 |
-
chars = list(token)
|
| 78 |
-
if len(chars) > self.max_input_chars_per_word:
|
| 79 |
-
output_tokens.append(self.unk_token)
|
| 80 |
-
continue
|
| 81 |
-
|
| 82 |
-
is_bad = False
|
| 83 |
-
start = 0
|
| 84 |
-
sub_tokens = []
|
| 85 |
-
while start < len(chars):
|
| 86 |
-
end = len(chars)
|
| 87 |
-
cur_substr = None
|
| 88 |
-
while start < end:
|
| 89 |
-
substr = bytes(chars[start:end])
|
| 90 |
-
if substr in self.vocab:
|
| 91 |
-
cur_substr = substr
|
| 92 |
-
break
|
| 93 |
-
end -= 1
|
| 94 |
-
if cur_substr is None:
|
| 95 |
-
is_bad = True
|
| 96 |
-
break
|
| 97 |
-
sub_tokens.append(cur_substr.decode())
|
| 98 |
-
start = end
|
| 99 |
-
|
| 100 |
-
if is_bad:
|
| 101 |
-
output_tokens.append(self.unk_token)
|
| 102 |
-
else:
|
| 103 |
-
output_tokens.extend(sub_tokens)
|
| 104 |
-
return output_tokens
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
class Rwkv5Tokenizer(PreTrainedTokenizer):
|
| 108 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
| 109 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 110 |
-
max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
|
| 111 |
-
|
| 112 |
-
model_input_names = ["input_ids", "attention_mask"]
|
| 113 |
-
|
| 114 |
-
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
|
| 115 |
-
if not os.path.isfile(vocab_file):
|
| 116 |
-
raise ValueError(
|
| 117 |
-
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
| 118 |
-
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
| 119 |
-
)
|
| 120 |
-
|
| 121 |
-
with open(vocab_file, "r") as reader:
|
| 122 |
-
tokens = reader.readlines()
|
| 123 |
-
vocab = {}
|
| 124 |
-
for index, token in enumerate(tokens):
|
| 125 |
-
token = eval(token.rstrip("\n"))
|
| 126 |
-
vocab[token] = index
|
| 127 |
-
|
| 128 |
-
self.add_bos_token = True
|
| 129 |
-
self.encoder = vocab
|
| 130 |
-
self.decoder = {v: k for k, v in vocab.items()}
|
| 131 |
-
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 132 |
-
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 133 |
-
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
|
| 134 |
-
|
| 135 |
-
@property
|
| 136 |
-
def vocab_size(self):
|
| 137 |
-
return len(self.encoder)
|
| 138 |
-
|
| 139 |
-
def get_vocab(self):
|
| 140 |
-
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
|
| 141 |
-
vocab.update(self.added_tokens_encoder)
|
| 142 |
-
return vocab
|
| 143 |
-
|
| 144 |
-
def _tokenize(self, text, split_special_tokens=False):
|
| 145 |
-
return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
|
| 146 |
-
|
| 147 |
-
def _convert_token_to_id(self, token):
|
| 148 |
-
"""Converts a token (byte) to an id using the vocab."""
|
| 149 |
-
if not isinstance(token, bytes):
|
| 150 |
-
token = token.encode("utf-8", errors="replace")
|
| 151 |
-
return self.encoder.get(token, self.unk_token_id)
|
| 152 |
-
|
| 153 |
-
def _convert_id_to_token(self, index):
|
| 154 |
-
"""Converts an index (integer) in a token (byte) using the vocab."""
|
| 155 |
-
token = self.decoder.get(index, self.unk_token)
|
| 156 |
-
if isinstance(token, (bytes)):
|
| 157 |
-
token = token.decode("utf-8", errors="replace")
|
| 158 |
-
return token
|
| 159 |
-
|
| 160 |
-
def convert_tokens_to_string(self, tokens):
|
| 161 |
-
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
| 162 |
-
out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
|
| 163 |
-
"utf-8"
|
| 164 |
-
)
|
| 165 |
-
return out_string
|
| 166 |
-
|
| 167 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 168 |
-
index = 0
|
| 169 |
-
if os.path.isdir(save_directory):
|
| 170 |
-
vocab_file = os.path.join(
|
| 171 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 172 |
-
)
|
| 173 |
-
else:
|
| 174 |
-
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
| 175 |
-
with open(vocab_file, "w") as writer:
|
| 176 |
-
for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
|
| 177 |
-
if index != token_index:
|
| 178 |
-
logger.warning(
|
| 179 |
-
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
| 180 |
-
" Please check that the vocabulary is not corrupted!"
|
| 181 |
-
)
|
| 182 |
-
index = token_index
|
| 183 |
-
writer.write(str(token) + "\n")
|
| 184 |
-
index += 1
|
| 185 |
-
return (vocab_file,)
|
| 186 |
-
|
| 187 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 188 |
-
if self.add_bos_token:
|
| 189 |
-
bos_token_ids = [self.bos_token_id]
|
| 190 |
-
else:
|
| 191 |
-
bos_token_ids = []
|
| 192 |
-
|
| 193 |
-
output = bos_token_ids + token_ids_0
|
| 194 |
-
|
| 195 |
-
if token_ids_1 is None:
|
| 196 |
-
return output
|
| 197 |
-
|
| 198 |
-
return output + bos_token_ids + token_ids_1
|
| 199 |
-
|
| 200 |
-
def get_special_tokens_mask(
|
| 201 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 202 |
-
) -> List[int]:
|
| 203 |
-
"""
|
| 204 |
-
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 205 |
-
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
| 206 |
-
|
| 207 |
-
Args:
|
| 208 |
-
token_ids_0 (`List[int]`):
|
| 209 |
-
List of IDs.
|
| 210 |
-
token_ids_1 (`List[int]`, *optional*):
|
| 211 |
-
Optional second list of IDs for sequence pairs.
|
| 212 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 213 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
| 214 |
-
|
| 215 |
-
Returns:
|
| 216 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 217 |
-
"""
|
| 218 |
-
if already_has_special_tokens:
|
| 219 |
-
return super().get_special_tokens_mask(
|
| 220 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 221 |
-
)
|
| 222 |
-
|
| 223 |
-
if not self.add_bos_token:
|
| 224 |
-
return super().get_special_tokens_mask(
|
| 225 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
if token_ids_1 is None:
|
| 229 |
-
return [1] + ([0] * len(token_ids_0))
|
| 230 |
-
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
| 231 |
-
# coding=utf-8
|
| 232 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
| 233 |
-
#
|
| 234 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 235 |
-
# you may not use this file except in compliance with the License.
|
| 236 |
-
# You may obtain a copy of the License at
|
| 237 |
-
#
|
| 238 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 239 |
-
#
|
| 240 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 241 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 242 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 243 |
-
# See the License for the specific language governing permissions and
|
| 244 |
-
# limitations under the License.
|
| 245 |
-
"""Tokenization classes for RWKV5."""
|
| 246 |
-
|
| 247 |
-
import os
|
| 248 |
from typing import TYPE_CHECKING, List, Optional, Tuple
|
| 249 |
-
import re
|
| 250 |
|
| 251 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 252 |
from transformers.utils import logging
|
|
@@ -267,7 +37,6 @@ PRETRAINED_VOCAB_FILES_MAP = {
|
|
| 267 |
}
|
| 268 |
|
| 269 |
|
| 270 |
-
|
| 271 |
def whitespace_tokenize(text):
|
| 272 |
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 273 |
The separators are kept
|
|
@@ -282,10 +51,9 @@ def whitespace_tokenize(text):
|
|
| 282 |
class WordpieceTokenizer(object):
|
| 283 |
"""Runs WordPiece tokenization."""
|
| 284 |
|
| 285 |
-
def __init__(self, vocab, unk_token
|
| 286 |
self.vocab = vocab
|
| 287 |
self.unk_token = unk_token
|
| 288 |
-
self.max_input_chars_per_word = max_input_chars_per_word
|
| 289 |
|
| 290 |
def tokenize(self, text):
|
| 291 |
"""
|
|
@@ -305,10 +73,6 @@ class WordpieceTokenizer(object):
|
|
| 305 |
output_tokens = []
|
| 306 |
for token in whitespace_tokenize(text):
|
| 307 |
chars = list(token)
|
| 308 |
-
if len(chars) > self.max_input_chars_per_word:
|
| 309 |
-
output_tokens.append(self.unk_token)
|
| 310 |
-
continue
|
| 311 |
-
|
| 312 |
is_bad = False
|
| 313 |
start = 0
|
| 314 |
sub_tokens = []
|
|
@@ -324,9 +88,12 @@ class WordpieceTokenizer(object):
|
|
| 324 |
if cur_substr is None:
|
| 325 |
is_bad = True
|
| 326 |
break
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
start = end
|
| 329 |
-
|
| 330 |
if is_bad:
|
| 331 |
output_tokens.append(self.unk_token)
|
| 332 |
else:
|
|
@@ -341,7 +108,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 341 |
|
| 342 |
model_input_names = ["input_ids", "attention_mask"]
|
| 343 |
|
| 344 |
-
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>",
|
| 345 |
if not os.path.isfile(vocab_file):
|
| 346 |
raise ValueError(
|
| 347 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
|
@@ -360,7 +127,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 360 |
self.decoder = {v: k for k, v in vocab.items()}
|
| 361 |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 362 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 363 |
-
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token,
|
| 364 |
|
| 365 |
@property
|
| 366 |
def vocab_size(self):
|
|
@@ -376,7 +143,9 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 376 |
|
| 377 |
def _convert_token_to_id(self, token):
|
| 378 |
"""Converts a token (byte) to an id using the vocab."""
|
| 379 |
-
if
|
|
|
|
|
|
|
| 380 |
token = token.encode("utf-8", errors="replace")
|
| 381 |
return self.encoder.get(token, self.unk_token_id)
|
| 382 |
|
|
|
|
| 15 |
"""Tokenization classes for RWKV5."""
|
| 16 |
|
| 17 |
import os
|
|
|
|
| 18 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
from typing import TYPE_CHECKING, List, Optional, Tuple
|
|
|
|
| 20 |
|
| 21 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 22 |
from transformers.utils import logging
|
|
|
|
| 37 |
}
|
| 38 |
|
| 39 |
|
|
|
|
| 40 |
def whitespace_tokenize(text):
|
| 41 |
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 42 |
The separators are kept
|
|
|
|
| 51 |
class WordpieceTokenizer(object):
|
| 52 |
"""Runs WordPiece tokenization."""
|
| 53 |
|
| 54 |
+
def __init__(self, vocab, unk_token):
|
| 55 |
self.vocab = vocab
|
| 56 |
self.unk_token = unk_token
|
|
|
|
| 57 |
|
| 58 |
def tokenize(self, text):
|
| 59 |
"""
|
|
|
|
| 73 |
output_tokens = []
|
| 74 |
for token in whitespace_tokenize(text):
|
| 75 |
chars = list(token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
is_bad = False
|
| 77 |
start = 0
|
| 78 |
sub_tokens = []
|
|
|
|
| 88 |
if cur_substr is None:
|
| 89 |
is_bad = True
|
| 90 |
break
|
| 91 |
+
try:
|
| 92 |
+
cur_substr = cur_substr.decode()
|
| 93 |
+
except UnicodeDecodeError:
|
| 94 |
+
cur_substr = str(cur_substr)
|
| 95 |
+
sub_tokens.append(cur_substr)
|
| 96 |
start = end
|
|
|
|
| 97 |
if is_bad:
|
| 98 |
output_tokens.append(self.unk_token)
|
| 99 |
else:
|
|
|
|
| 108 |
|
| 109 |
model_input_names = ["input_ids", "attention_mask"]
|
| 110 |
|
| 111 |
+
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
|
| 112 |
if not os.path.isfile(vocab_file):
|
| 113 |
raise ValueError(
|
| 114 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
|
|
|
| 127 |
self.decoder = {v: k for k, v in vocab.items()}
|
| 128 |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 129 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 130 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
| 131 |
|
| 132 |
@property
|
| 133 |
def vocab_size(self):
|
|
|
|
| 143 |
|
| 144 |
def _convert_token_to_id(self, token):
|
| 145 |
"""Converts a token (byte) to an id using the vocab."""
|
| 146 |
+
if token.startswith("b'\\"):
|
| 147 |
+
token = eval(token)
|
| 148 |
+
elif not isinstance(token, bytes):
|
| 149 |
token = token.encode("utf-8", errors="replace")
|
| 150 |
return self.encoder.get(token, self.unk_token_id)
|
| 151 |
|