Upload 10 files (#1)
Browse files- Upload 10 files (190e3b704a1196a37f2e9ee91560693d73ca61ba)
Co-authored-by: Zhang Xiaoyu <[email protected]>
- config.json +1 -0
- configuration_rwkv6.py +2 -6
- tokenization_rwkv5.py +242 -11
- tokenizer_config.json +5 -16
config.json
CHANGED
|
@@ -10,6 +10,7 @@
|
|
| 10 |
"bos_token_id": 0,
|
| 11 |
"eos_token_id": 0,
|
| 12 |
"head_size": 64,
|
|
|
|
| 13 |
"hidden_size": 2048,
|
| 14 |
"intermediate_size": null,
|
| 15 |
"layer_norm_epsilon": 1e-05,
|
|
|
|
| 10 |
"bos_token_id": 0,
|
| 11 |
"eos_token_id": 0,
|
| 12 |
"head_size": 64,
|
| 13 |
+
"head_size_divisor": 8,
|
| 14 |
"hidden_size": 2048,
|
| 15 |
"intermediate_size": null,
|
| 16 |
"layer_norm_epsilon": 1e-05,
|
configuration_rwkv6.py
CHANGED
|
@@ -53,11 +53,9 @@ class Rwkv6Config(PretrainedConfig):
|
|
| 53 |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
| 54 |
The epsilon to use in the layer normalization layers.
|
| 55 |
bos_token_id (`int`, *optional*, defaults to 0):
|
| 56 |
-
The id of the beginning of sentence token in the vocabulary. Defaults to 0
|
| 57 |
-
as GPTNeoX.
|
| 58 |
eos_token_id (`int`, *optional*, defaults to 0):
|
| 59 |
-
The id of the end of sentence token in the vocabulary. Defaults to 0
|
| 60 |
-
GPTNeoX.
|
| 61 |
rescale_every (`int`, *optional*, defaults to 6):
|
| 62 |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
| 63 |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
|
@@ -90,7 +88,6 @@ class Rwkv6Config(PretrainedConfig):
|
|
| 90 |
hidden_size=768,
|
| 91 |
num_hidden_layers=24,
|
| 92 |
attention_hidden_size=None,
|
| 93 |
-
num_attention_heads=64,
|
| 94 |
head_size=64,
|
| 95 |
head_size_divisor=8,
|
| 96 |
intermediate_size=None,
|
|
@@ -106,7 +103,6 @@ class Rwkv6Config(PretrainedConfig):
|
|
| 106 |
self.hidden_size = hidden_size
|
| 107 |
self.num_hidden_layers = num_hidden_layers
|
| 108 |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
| 109 |
-
self.num_attention_heads = num_attention_heads
|
| 110 |
self.head_size = head_size
|
| 111 |
self.head_size_divisor = head_size_divisor
|
| 112 |
self.intermediate_size = None
|
|
|
|
| 53 |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
| 54 |
The epsilon to use in the layer normalization layers.
|
| 55 |
bos_token_id (`int`, *optional*, defaults to 0):
|
| 56 |
+
The id of the beginning of sentence token in the vocabulary. Defaults to 0.
|
|
|
|
| 57 |
eos_token_id (`int`, *optional*, defaults to 0):
|
| 58 |
+
The id of the end of sentence token in the vocabulary. Defaults to 0.
|
|
|
|
| 59 |
rescale_every (`int`, *optional*, defaults to 6):
|
| 60 |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every
|
| 61 |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done.
|
|
|
|
| 88 |
hidden_size=768,
|
| 89 |
num_hidden_layers=24,
|
| 90 |
attention_hidden_size=None,
|
|
|
|
| 91 |
head_size=64,
|
| 92 |
head_size_divisor=8,
|
| 93 |
intermediate_size=None,
|
|
|
|
| 103 |
self.hidden_size = hidden_size
|
| 104 |
self.num_hidden_layers = num_hidden_layers
|
| 105 |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size
|
|
|
|
| 106 |
self.head_size = head_size
|
| 107 |
self.head_size_divisor = head_size_divisor
|
| 108 |
self.intermediate_size = None
|
tokenization_rwkv5.py
CHANGED
|
@@ -15,8 +15,238 @@
|
|
| 15 |
"""Tokenization classes for RWKV5."""
|
| 16 |
|
| 17 |
import os
|
|
|
|
| 18 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
from typing import TYPE_CHECKING, List, Optional, Tuple
|
|
|
|
| 20 |
|
| 21 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 22 |
from transformers.utils import logging
|
|
@@ -37,6 +267,7 @@ PRETRAINED_VOCAB_FILES_MAP = {
|
|
| 37 |
}
|
| 38 |
|
| 39 |
|
|
|
|
| 40 |
def whitespace_tokenize(text):
|
| 41 |
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 42 |
The separators are kept
|
|
@@ -51,9 +282,10 @@ def whitespace_tokenize(text):
|
|
| 51 |
class WordpieceTokenizer(object):
|
| 52 |
"""Runs WordPiece tokenization."""
|
| 53 |
|
| 54 |
-
def __init__(self, vocab, unk_token):
|
| 55 |
self.vocab = vocab
|
| 56 |
self.unk_token = unk_token
|
|
|
|
| 57 |
|
| 58 |
def tokenize(self, text):
|
| 59 |
"""
|
|
@@ -73,6 +305,10 @@ class WordpieceTokenizer(object):
|
|
| 73 |
output_tokens = []
|
| 74 |
for token in whitespace_tokenize(text):
|
| 75 |
chars = list(token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
is_bad = False
|
| 77 |
start = 0
|
| 78 |
sub_tokens = []
|
|
@@ -88,12 +324,9 @@ class WordpieceTokenizer(object):
|
|
| 88 |
if cur_substr is None:
|
| 89 |
is_bad = True
|
| 90 |
break
|
| 91 |
-
|
| 92 |
-
cur_substr = cur_substr.decode()
|
| 93 |
-
except UnicodeDecodeError:
|
| 94 |
-
cur_substr = str(cur_substr)
|
| 95 |
-
sub_tokens.append(cur_substr)
|
| 96 |
start = end
|
|
|
|
| 97 |
if is_bad:
|
| 98 |
output_tokens.append(self.unk_token)
|
| 99 |
else:
|
|
@@ -108,7 +341,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 108 |
|
| 109 |
model_input_names = ["input_ids", "attention_mask"]
|
| 110 |
|
| 111 |
-
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>",
|
| 112 |
if not os.path.isfile(vocab_file):
|
| 113 |
raise ValueError(
|
| 114 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
|
@@ -127,7 +360,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 127 |
self.decoder = {v: k for k, v in vocab.items()}
|
| 128 |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 129 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 130 |
-
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
| 131 |
|
| 132 |
@property
|
| 133 |
def vocab_size(self):
|
|
@@ -143,9 +376,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
|
|
| 143 |
|
| 144 |
def _convert_token_to_id(self, token):
|
| 145 |
"""Converts a token (byte) to an id using the vocab."""
|
| 146 |
-
if token
|
| 147 |
-
token = eval(token)
|
| 148 |
-
elif not isinstance(token, bytes):
|
| 149 |
token = token.encode("utf-8", errors="replace")
|
| 150 |
return self.encoder.get(token, self.unk_token_id)
|
| 151 |
|
|
|
|
| 15 |
"""Tokenization classes for RWKV5."""
|
| 16 |
|
| 17 |
import os
|
| 18 |
+
from typing import TYPE_CHECKING, List, Optional, Tuple
|
| 19 |
import re
|
| 20 |
+
|
| 21 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 22 |
+
from transformers.utils import logging
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
if TYPE_CHECKING:
|
| 26 |
+
pass
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
VOCAB_FILES_NAMES = {
|
| 31 |
+
"vocab_file": "vocab.txt",
|
| 32 |
+
}
|
| 33 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 34 |
+
"vocab_file": {
|
| 35 |
+
"ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
|
| 36 |
+
},
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def whitespace_tokenize(text):
|
| 42 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 43 |
+
The separators are kept
|
| 44 |
+
"""
|
| 45 |
+
text = text.strip()
|
| 46 |
+
if not text:
|
| 47 |
+
return []
|
| 48 |
+
tokens = re.split(b"(?= )", text)
|
| 49 |
+
return tokens
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class WordpieceTokenizer(object):
|
| 53 |
+
"""Runs WordPiece tokenization."""
|
| 54 |
+
|
| 55 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
| 56 |
+
self.vocab = vocab
|
| 57 |
+
self.unk_token = unk_token
|
| 58 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
| 59 |
+
|
| 60 |
+
def tokenize(self, text):
|
| 61 |
+
"""
|
| 62 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
| 63 |
+
tokenization using the given vocabulary.
|
| 64 |
+
|
| 65 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
text: A single token or whitespace separated tokens. This should have
|
| 69 |
+
already been passed through *BasicTokenizer*.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
A list of wordpiece tokens.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
output_tokens = []
|
| 76 |
+
for token in whitespace_tokenize(text):
|
| 77 |
+
chars = list(token)
|
| 78 |
+
if len(chars) > self.max_input_chars_per_word:
|
| 79 |
+
output_tokens.append(self.unk_token)
|
| 80 |
+
continue
|
| 81 |
+
|
| 82 |
+
is_bad = False
|
| 83 |
+
start = 0
|
| 84 |
+
sub_tokens = []
|
| 85 |
+
while start < len(chars):
|
| 86 |
+
end = len(chars)
|
| 87 |
+
cur_substr = None
|
| 88 |
+
while start < end:
|
| 89 |
+
substr = bytes(chars[start:end])
|
| 90 |
+
if substr in self.vocab:
|
| 91 |
+
cur_substr = substr
|
| 92 |
+
break
|
| 93 |
+
end -= 1
|
| 94 |
+
if cur_substr is None:
|
| 95 |
+
is_bad = True
|
| 96 |
+
break
|
| 97 |
+
sub_tokens.append(cur_substr.decode())
|
| 98 |
+
start = end
|
| 99 |
+
|
| 100 |
+
if is_bad:
|
| 101 |
+
output_tokens.append(self.unk_token)
|
| 102 |
+
else:
|
| 103 |
+
output_tokens.extend(sub_tokens)
|
| 104 |
+
return output_tokens
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
class Rwkv5Tokenizer(PreTrainedTokenizer):
|
| 108 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 109 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 110 |
+
max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
|
| 111 |
+
|
| 112 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 113 |
+
|
| 114 |
+
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
|
| 115 |
+
if not os.path.isfile(vocab_file):
|
| 116 |
+
raise ValueError(
|
| 117 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
| 118 |
+
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
with open(vocab_file, "r") as reader:
|
| 122 |
+
tokens = reader.readlines()
|
| 123 |
+
vocab = {}
|
| 124 |
+
for index, token in enumerate(tokens):
|
| 125 |
+
token = eval(token.rstrip("\n"))
|
| 126 |
+
vocab[token] = index
|
| 127 |
+
|
| 128 |
+
self.add_bos_token = True
|
| 129 |
+
self.encoder = vocab
|
| 130 |
+
self.decoder = {v: k for k, v in vocab.items()}
|
| 131 |
+
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 132 |
+
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 133 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def vocab_size(self):
|
| 137 |
+
return len(self.encoder)
|
| 138 |
+
|
| 139 |
+
def get_vocab(self):
|
| 140 |
+
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
|
| 141 |
+
vocab.update(self.added_tokens_encoder)
|
| 142 |
+
return vocab
|
| 143 |
+
|
| 144 |
+
def _tokenize(self, text, split_special_tokens=False):
|
| 145 |
+
return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
|
| 146 |
+
|
| 147 |
+
def _convert_token_to_id(self, token):
|
| 148 |
+
"""Converts a token (byte) to an id using the vocab."""
|
| 149 |
+
if not isinstance(token, bytes):
|
| 150 |
+
token = token.encode("utf-8", errors="replace")
|
| 151 |
+
return self.encoder.get(token, self.unk_token_id)
|
| 152 |
+
|
| 153 |
+
def _convert_id_to_token(self, index):
|
| 154 |
+
"""Converts an index (integer) in a token (byte) using the vocab."""
|
| 155 |
+
token = self.decoder.get(index, self.unk_token)
|
| 156 |
+
if isinstance(token, (bytes)):
|
| 157 |
+
token = token.decode("utf-8", errors="replace")
|
| 158 |
+
return token
|
| 159 |
+
|
| 160 |
+
def convert_tokens_to_string(self, tokens):
|
| 161 |
+
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
|
| 162 |
+
out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
|
| 163 |
+
"utf-8"
|
| 164 |
+
)
|
| 165 |
+
return out_string
|
| 166 |
+
|
| 167 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 168 |
+
index = 0
|
| 169 |
+
if os.path.isdir(save_directory):
|
| 170 |
+
vocab_file = os.path.join(
|
| 171 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 172 |
+
)
|
| 173 |
+
else:
|
| 174 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
| 175 |
+
with open(vocab_file, "w") as writer:
|
| 176 |
+
for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
|
| 177 |
+
if index != token_index:
|
| 178 |
+
logger.warning(
|
| 179 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
| 180 |
+
" Please check that the vocabulary is not corrupted!"
|
| 181 |
+
)
|
| 182 |
+
index = token_index
|
| 183 |
+
writer.write(str(token) + "\n")
|
| 184 |
+
index += 1
|
| 185 |
+
return (vocab_file,)
|
| 186 |
+
|
| 187 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 188 |
+
if self.add_bos_token:
|
| 189 |
+
bos_token_ids = [self.bos_token_id]
|
| 190 |
+
else:
|
| 191 |
+
bos_token_ids = []
|
| 192 |
+
|
| 193 |
+
output = bos_token_ids + token_ids_0
|
| 194 |
+
|
| 195 |
+
if token_ids_1 is None:
|
| 196 |
+
return output
|
| 197 |
+
|
| 198 |
+
return output + bos_token_ids + token_ids_1
|
| 199 |
+
|
| 200 |
+
def get_special_tokens_mask(
|
| 201 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
| 202 |
+
) -> List[int]:
|
| 203 |
+
"""
|
| 204 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
| 205 |
+
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
token_ids_0 (`List[int]`):
|
| 209 |
+
List of IDs.
|
| 210 |
+
token_ids_1 (`List[int]`, *optional*):
|
| 211 |
+
Optional second list of IDs for sequence pairs.
|
| 212 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 213 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
| 217 |
+
"""
|
| 218 |
+
if already_has_special_tokens:
|
| 219 |
+
return super().get_special_tokens_mask(
|
| 220 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
if not self.add_bos_token:
|
| 224 |
+
return super().get_special_tokens_mask(
|
| 225 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if token_ids_1 is None:
|
| 229 |
+
return [1] + ([0] * len(token_ids_0))
|
| 230 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
| 231 |
+
# coding=utf-8
|
| 232 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
| 233 |
+
#
|
| 234 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 235 |
+
# you may not use this file except in compliance with the License.
|
| 236 |
+
# You may obtain a copy of the License at
|
| 237 |
+
#
|
| 238 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 239 |
+
#
|
| 240 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 241 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 242 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 243 |
+
# See the License for the specific language governing permissions and
|
| 244 |
+
# limitations under the License.
|
| 245 |
+
"""Tokenization classes for RWKV5."""
|
| 246 |
+
|
| 247 |
+
import os
|
| 248 |
from typing import TYPE_CHECKING, List, Optional, Tuple
|
| 249 |
+
import re
|
| 250 |
|
| 251 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 252 |
from transformers.utils import logging
|
|
|
|
| 267 |
}
|
| 268 |
|
| 269 |
|
| 270 |
+
|
| 271 |
def whitespace_tokenize(text):
|
| 272 |
"""Runs basic whitespace cleaning and splitting on a piece of text.
|
| 273 |
The separators are kept
|
|
|
|
| 282 |
class WordpieceTokenizer(object):
|
| 283 |
"""Runs WordPiece tokenization."""
|
| 284 |
|
| 285 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
| 286 |
self.vocab = vocab
|
| 287 |
self.unk_token = unk_token
|
| 288 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
| 289 |
|
| 290 |
def tokenize(self, text):
|
| 291 |
"""
|
|
|
|
| 305 |
output_tokens = []
|
| 306 |
for token in whitespace_tokenize(text):
|
| 307 |
chars = list(token)
|
| 308 |
+
if len(chars) > self.max_input_chars_per_word:
|
| 309 |
+
output_tokens.append(self.unk_token)
|
| 310 |
+
continue
|
| 311 |
+
|
| 312 |
is_bad = False
|
| 313 |
start = 0
|
| 314 |
sub_tokens = []
|
|
|
|
| 324 |
if cur_substr is None:
|
| 325 |
is_bad = True
|
| 326 |
break
|
| 327 |
+
sub_tokens.append(cur_substr.decode())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
start = end
|
| 329 |
+
|
| 330 |
if is_bad:
|
| 331 |
output_tokens.append(self.unk_token)
|
| 332 |
else:
|
|
|
|
| 341 |
|
| 342 |
model_input_names = ["input_ids", "attention_mask"]
|
| 343 |
|
| 344 |
+
def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
|
| 345 |
if not os.path.isfile(vocab_file):
|
| 346 |
raise ValueError(
|
| 347 |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
|
|
|
| 360 |
self.decoder = {v: k for k, v in vocab.items()}
|
| 361 |
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
|
| 362 |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
|
| 363 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
|
| 364 |
|
| 365 |
@property
|
| 366 |
def vocab_size(self):
|
|
|
|
| 376 |
|
| 377 |
def _convert_token_to_id(self, token):
|
| 378 |
"""Converts a token (byte) to an id using the vocab."""
|
| 379 |
+
if not isinstance(token, bytes):
|
|
|
|
|
|
|
| 380 |
token = token.encode("utf-8", errors="replace")
|
| 381 |
return self.encoder.get(token, self.unk_token_id)
|
| 382 |
|
tokenizer_config.json
CHANGED
|
@@ -1,23 +1,12 @@
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"auto_map": {
|
| 3 |
"AutoTokenizer": [
|
| 4 |
"tokenization_rwkv5.Rwkv5Tokenizer",
|
| 5 |
null
|
| 6 |
]
|
| 7 |
-
}
|
| 8 |
-
"added_tokens_decoder": {
|
| 9 |
-
"0": {
|
| 10 |
-
"content": "<s>",
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": true,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false,
|
| 15 |
-
"special": false
|
| 16 |
-
}
|
| 17 |
-
},
|
| 18 |
-
"bos_token": "<s>",
|
| 19 |
-
"clean_up_tokenization_spaces": true,
|
| 20 |
-
"eos_token": "<s>",
|
| 21 |
-
"model_max_length": 1000000000000000019884624838656,
|
| 22 |
-
"unk_token": "<s>"
|
| 23 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"name_or_path": "rwkv-5-tokenizer",
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"tokenizer_class": "Rwkv5Tokenizer",
|
| 5 |
+
"use_fast": false,
|
| 6 |
"auto_map": {
|
| 7 |
"AutoTokenizer": [
|
| 8 |
"tokenization_rwkv5.Rwkv5Tokenizer",
|
| 9 |
null
|
| 10 |
]
|
| 11 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
}
|