Qwen3 base Financial
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-0.6B
- Maximum Sequence Length: 32768 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("PhilipCisco/qwen3-base-financial")
# Run inference
queries = [
"Which section of the financial document addresses Financial Statements and Supplementary Data?",
]
documents = [
'Financial Statements and Supplementary Data are addressed in Item 8 of the financial document.',
'The 7% Notes due 2029 are scheduled to mature on February 15, 2029.',
'The gift card liability was $145,014 in 2022 and increased to $164,930 in 2023.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.6634, 0.0292, -0.0534]])
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_1024 - Evaluated with
InformationRetrievalEvaluatorwith these parameters:{ "truncate_dim": 1024 }
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.7179 |
| cosine_accuracy@3 | 0.8536 |
| cosine_accuracy@5 | 0.8771 |
| cosine_accuracy@10 | 0.9207 |
| cosine_precision@1 | 0.7179 |
| cosine_precision@3 | 0.2845 |
| cosine_precision@5 | 0.1754 |
| cosine_precision@10 | 0.0921 |
| cosine_recall@1 | 0.7179 |
| cosine_recall@3 | 0.8536 |
| cosine_recall@5 | 0.8771 |
| cosine_recall@10 | 0.9207 |
| cosine_ndcg@10 | 0.8231 |
| cosine_mrr@10 | 0.7916 |
| cosine_map@100 | 0.7948 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,600 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 20.73 tokens
- max: 50 tokens
- min: 10 tokens
- mean: 47.95 tokens
- max: 431 tokens
- Samples:
anchor positive What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022?Sales and marketing expenses increased by $42.5 million, or 6%, for the year ended December 31, 2023 compared to 2022.What method is used to provide information about legal proceedings in the Annual Report on Form 10-K?Information about legal proceedings in the Annual Report on Form 10-K is incorporated by reference under several notes and sections.How did selling, distribution, and administration expenses change in 2023 compared to previous years?In 2023, the decline in Selling, distribution and administration expense was driven by lower compensation expense associated with workforce reductions, lower costs for professional services and lower freight and warehousing expenses as a result of lower shipments during 2023. Additionally, Selling, distribution and administration expense in 2023 included $116.0 million of intangible asset impairment charges as compared to $281.0 million of intangible asset impairment charges in 2022. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024 ], "matryoshka_weights": [ 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 4per_device_eval_batch_size: 4gradient_accumulation_steps: 8learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 |
|---|---|---|---|
| -1 | -1 | - | 0.7762 |
| 0.0571 | 10 | 0.0102 | - |
| 0.1143 | 20 | 0.01 | - |
| 0.1714 | 30 | 0.002 | - |
| 0.2286 | 40 | 0.0162 | - |
| 0.2857 | 50 | 0.0015 | - |
| 0.3429 | 60 | 0.0064 | - |
| 0.4 | 70 | 0.0052 | - |
| 0.4571 | 80 | 0.0026 | - |
| 0.5143 | 90 | 0.0098 | - |
| 0.5714 | 100 | 0.0137 | - |
| 0.6286 | 110 | 0.0159 | - |
| 0.6857 | 120 | 0.0062 | - |
| 0.7429 | 130 | 0.0076 | - |
| 0.8 | 140 | 0.0046 | - |
| 0.8571 | 150 | 0.0341 | - |
| 0.9143 | 160 | 0.0032 | - |
| 0.9714 | 170 | 0.0051 | - |
| 1.0 | 175 | - | 0.7873 |
| 1.0286 | 180 | 0.0106 | - |
| 1.0857 | 190 | 0.0003 | - |
| 1.1429 | 200 | 0.0011 | - |
| 1.2 | 210 | 0.0017 | - |
| 1.2571 | 220 | 0.0081 | - |
| 1.3143 | 230 | 0.0005 | - |
| 1.3714 | 240 | 0.0185 | - |
| 1.4286 | 250 | 0.0008 | - |
| 1.4857 | 260 | 0.0034 | - |
| 1.5429 | 270 | 0.0042 | - |
| 1.6 | 280 | 0.0088 | - |
| 1.6571 | 290 | 0.0026 | - |
| 1.7143 | 300 | 0.0038 | - |
| 1.7714 | 310 | 0.0032 | - |
| 1.8286 | 320 | 0.0012 | - |
| 1.8857 | 330 | 0.0027 | - |
| 1.9429 | 340 | 0.0073 | - |
| 2.0 | 350 | 0.0033 | 0.8056 |
| 2.0571 | 360 | 0.0013 | - |
| 2.1143 | 370 | 0.0023 | - |
| 2.1714 | 380 | 0.0094 | - |
| 2.2286 | 390 | 0.0132 | - |
| 2.2857 | 400 | 0.0026 | - |
| 2.3429 | 410 | 0.0054 | - |
| 2.4 | 420 | 0.0035 | - |
| 2.4571 | 430 | 0.0019 | - |
| 2.5143 | 440 | 0.0003 | - |
| 2.5714 | 450 | 0.0059 | - |
| 2.6286 | 460 | 0.0006 | - |
| 2.6857 | 470 | 0.0004 | - |
| 2.7429 | 480 | 0.0102 | - |
| 2.8 | 490 | 0.0011 | - |
| 2.8571 | 500 | 0.0075 | - |
| 2.9143 | 510 | 0.013 | - |
| 2.9714 | 520 | 0.0022 | - |
| 3.0 | 525 | - | 0.8238 |
| 3.0286 | 530 | 0.0019 | - |
| 3.0857 | 540 | 0.0057 | - |
| 3.1429 | 550 | 0.0042 | - |
| 3.2 | 560 | 0.0008 | - |
| 3.2571 | 570 | 0.0001 | - |
| 3.3143 | 580 | 0.0015 | - |
| 3.3714 | 590 | 0.0175 | - |
| 3.4286 | 600 | 0.0006 | - |
| 3.4857 | 610 | 0.0003 | - |
| 3.5429 | 620 | 0.0056 | - |
| 3.6 | 630 | 0.002 | - |
| 3.6571 | 640 | 0.0091 | - |
| 3.7143 | 650 | 0.0009 | - |
| 3.7714 | 660 | 0.0011 | - |
| 3.8286 | 670 | 0.0001 | - |
| 3.8857 | 680 | 0.0014 | - |
| 3.9429 | 690 | 0.0019 | - |
| 4.0 | 700 | 0.0001 | 0.8231 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 2.19.1
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for PhilipCisco/qwen3-base-financial
Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.718
- Cosine Accuracy@3 on dim 1024self-reported0.854
- Cosine Accuracy@5 on dim 1024self-reported0.877
- Cosine Accuracy@10 on dim 1024self-reported0.921
- Cosine Precision@1 on dim 1024self-reported0.718
- Cosine Precision@3 on dim 1024self-reported0.285
- Cosine Precision@5 on dim 1024self-reported0.175
- Cosine Precision@10 on dim 1024self-reported0.092
- Cosine Recall@1 on dim 1024self-reported0.718
- Cosine Recall@3 on dim 1024self-reported0.854