Qwen3 base Financial

This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-0.6B on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Qwen/Qwen3-Embedding-0.6B
  • Maximum Sequence Length: 32768 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 32768, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("PhilipCisco/qwen3-base-financial")
# Run inference
queries = [
    "Which section of the financial document addresses Financial Statements and Supplementary Data?",
]
documents = [
    'Financial Statements and Supplementary Data are addressed in Item 8 of the financial document.',
    'The 7% Notes due 2029 are scheduled to mature on February 15, 2029.',
    'The gift card liability was $145,014 in 2022 and increased to $164,930 in 2023.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.6634,  0.0292, -0.0534]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7179
cosine_accuracy@3 0.8536
cosine_accuracy@5 0.8771
cosine_accuracy@10 0.9207
cosine_precision@1 0.7179
cosine_precision@3 0.2845
cosine_precision@5 0.1754
cosine_precision@10 0.0921
cosine_recall@1 0.7179
cosine_recall@3 0.8536
cosine_recall@5 0.8771
cosine_recall@10 0.9207
cosine_ndcg@10 0.8231
cosine_mrr@10 0.7916
cosine_map@100 0.7948

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,600 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 7 tokens
    • mean: 20.73 tokens
    • max: 50 tokens
    • min: 10 tokens
    • mean: 47.95 tokens
    • max: 431 tokens
  • Samples:
    anchor positive
    What was the increase in sales and marketing expenses for the year ended December 31, 2023 compared to 2022? Sales and marketing expenses increased by $42.5 million, or 6%, for the year ended December 31, 2023 compared to 2022.
    What method is used to provide information about legal proceedings in the Annual Report on Form 10-K? Information about legal proceedings in the Annual Report on Form 10-K is incorporated by reference under several notes and sections.
    How did selling, distribution, and administration expenses change in 2023 compared to previous years? In 2023, the decline in Selling, distribution and administration expense was driven by lower compensation expense associated with workforce reductions, lower costs for professional services and lower freight and warehousing expenses as a result of lower shipments during 2023. Additionally, Selling, distribution and administration expense in 2023 included $116.0 million of intangible asset impairment charges as compared to $281.0 million of intangible asset impairment charges in 2022.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024
        ],
        "matryoshka_weights": [
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss dim_1024_cosine_ndcg@10
-1 -1 - 0.7762
0.0571 10 0.0102 -
0.1143 20 0.01 -
0.1714 30 0.002 -
0.2286 40 0.0162 -
0.2857 50 0.0015 -
0.3429 60 0.0064 -
0.4 70 0.0052 -
0.4571 80 0.0026 -
0.5143 90 0.0098 -
0.5714 100 0.0137 -
0.6286 110 0.0159 -
0.6857 120 0.0062 -
0.7429 130 0.0076 -
0.8 140 0.0046 -
0.8571 150 0.0341 -
0.9143 160 0.0032 -
0.9714 170 0.0051 -
1.0 175 - 0.7873
1.0286 180 0.0106 -
1.0857 190 0.0003 -
1.1429 200 0.0011 -
1.2 210 0.0017 -
1.2571 220 0.0081 -
1.3143 230 0.0005 -
1.3714 240 0.0185 -
1.4286 250 0.0008 -
1.4857 260 0.0034 -
1.5429 270 0.0042 -
1.6 280 0.0088 -
1.6571 290 0.0026 -
1.7143 300 0.0038 -
1.7714 310 0.0032 -
1.8286 320 0.0012 -
1.8857 330 0.0027 -
1.9429 340 0.0073 -
2.0 350 0.0033 0.8056
2.0571 360 0.0013 -
2.1143 370 0.0023 -
2.1714 380 0.0094 -
2.2286 390 0.0132 -
2.2857 400 0.0026 -
2.3429 410 0.0054 -
2.4 420 0.0035 -
2.4571 430 0.0019 -
2.5143 440 0.0003 -
2.5714 450 0.0059 -
2.6286 460 0.0006 -
2.6857 470 0.0004 -
2.7429 480 0.0102 -
2.8 490 0.0011 -
2.8571 500 0.0075 -
2.9143 510 0.013 -
2.9714 520 0.0022 -
3.0 525 - 0.8238
3.0286 530 0.0019 -
3.0857 540 0.0057 -
3.1429 550 0.0042 -
3.2 560 0.0008 -
3.2571 570 0.0001 -
3.3143 580 0.0015 -
3.3714 590 0.0175 -
3.4286 600 0.0006 -
3.4857 610 0.0003 -
3.5429 620 0.0056 -
3.6 630 0.002 -
3.6571 640 0.0091 -
3.7143 650 0.0009 -
3.7714 660 0.0011 -
3.8286 670 0.0001 -
3.8857 680 0.0014 -
3.9429 690 0.0019 -
4.0 700 0.0001 0.8231
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.1
  • Datasets: 2.19.1
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
1
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for PhilipCisco/qwen3-base-financial

Finetuned
(81)
this model

Evaluation results