See axolotl config
axolotl version: 0.9.2
base_model: anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only
#base_model_ignore_patterns: "consolidated.safetensors"
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: NewEden/magnum-v5-sft-prototype-ms3.2-lora
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: NewEden/magnum-v5-sft-proto-mistral-v7-tekken-rev1-32k
ds_type: parquet
type:
shuffle_merged_datasets: true
dataset_prepared_path: ./magnum-24b-data
val_set_size: 0.0
output_dir: ./magnum-24b-lora-out
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
sequence_len: 32768
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: 24b-magnum-lora
wandb_entity:
wandb_watch:
wandb_name: 24b-magnum-lora-mistral-3.2
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: cosine
learning_rate: 2e-5
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
magnum-v5-sft-prototype-ms3.2-lora
This model is a fine-tuned version of anthracite-core/Mistral-Small-3.2-24B-Instruct-2506-Text-Only on the NewEden/magnum-v5-sft-proto-mistral-v7-tekken-rev1-32k dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.1+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for NewEden-Forge/magnum-v5-sft-prototype-ms3.2-lora
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503