gte-reranker-modernbert-base-finetune
This model is a fine-tuned version of Alibaba-NLP/gte-reranker-modernbert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4467
- Spearman: 0.3982
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman |
|---|---|---|---|---|
| No log | 0 | 0 | 1.3782 | -0.0348 |
| 0.2671 | 0.2458 | 1000 | 0.4733 | 0.0935 |
| 0.8379 | 0.4916 | 2000 | 0.4701 | 0.1638 |
| 0.772 | 0.7375 | 3000 | 0.4644 | 0.2124 |
| 0.2628 | 0.9833 | 4000 | 0.4654 | 0.2498 |
| 0.5863 | 1.2291 | 5000 | 0.4578 | 0.3172 |
| 0.6618 | 1.4749 | 6000 | 0.4576 | 0.3534 |
| 0.2003 | 1.7207 | 7000 | 0.4499 | 0.3697 |
| 0.5668 | 1.9666 | 8000 | 0.4455 | 0.3845 |
| 0.4551 | 2.2124 | 9000 | 0.4460 | 0.3914 |
| 0.5189 | 2.4582 | 10000 | 0.4461 | 0.3964 |
| 0.2746 | 2.7040 | 11000 | 0.4476 | 0.3980 |
| 0.6243 | 2.9499 | 12000 | 0.4467 | 0.3982 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for Mithilss/gte-reranker-modernbert-base-finetune
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-reranker-modernbert-base