gte-reranker-modernbert-base-finetune

This model is a fine-tuned version of Alibaba-NLP/gte-reranker-modernbert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4467
  • Spearman: 0.3982

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Spearman
No log 0 0 1.3782 -0.0348
0.2671 0.2458 1000 0.4733 0.0935
0.8379 0.4916 2000 0.4701 0.1638
0.772 0.7375 3000 0.4644 0.2124
0.2628 0.9833 4000 0.4654 0.2498
0.5863 1.2291 5000 0.4578 0.3172
0.6618 1.4749 6000 0.4576 0.3534
0.2003 1.7207 7000 0.4499 0.3697
0.5668 1.9666 8000 0.4455 0.3845
0.4551 2.2124 9000 0.4460 0.3914
0.5189 2.4582 10000 0.4461 0.3964
0.2746 2.7040 11000 0.4476 0.3980
0.6243 2.9499 12000 0.4467 0.3982

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mithilss/gte-reranker-modernbert-base-finetune

Finetuned
(11)
this model