Measuring Embeddings
Collection
12 items
•
Updated
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct on the embeddings-train-semantic dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Lauther/emb-multilingual-e5-large-instruct-3e")
# Run inference
sentences = [
'What columns store the uncertainty values?',
'How are flow computers and measurement systems related?\nFlow computers can have multiple systems assigned to them. However, a measurement system can only be assigned to one flow computer.\n\nDatabase terminology:\nIn the database, this relationship is referred to as:\n- Meter streams\n- Meter runs\n- Sections\n\nStorage of the relationship:\nThe relationship between a flow computer and its assigned measurement system is stored in a special table.\n\nUser context:\nWhen a user refers to a "meter stream," they are indicating that they are searching for a measurement system assigned to a specific flow computer.',
'What is uncertainty?\nUncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.\n\nTypes of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of magnitudes (variables):\n - Refers to the uncertainty of specific variables, such as temperature or pressure.\n - It is calculated after calibrating a device or obtained from the equipment manufacturer\'s manual.\n - This uncertainty serves as a starting point for further calculations related to the equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the uncertainty calculated for the overall flow measurement.\n - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.\n\nKey points:\n- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of the measurement system. Think of them as the "building blocks."\n- Do not confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**: Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty of the measurement system**: Specific to the overall flow measurement.\n\nDatabase storage for uncertainties:\nIn the database, uncertainty calculations are stored in two separate tables:\n1. Uncertainty of magnitudes (variables):\n - Stores the uncertainty values for specific variables (e.g., temperature, pressure).\n\n2. Uncertainty of the measurement system:\n - Stores the uncertainty values for the overall flow measurement system.\n\nHow to retrieve uncertainty data:\n- To find the uncertainty of the measurement system, join the measurement systems table with the uncertainty of the measurement system table.\n- To find the uncertainty of a specific variable (magnitude), join the measurement systems table with the uncertainty of magnitudes (variables) table.\n\nImportant note:\nDo not confuse the two types of uncertainty:\n- If the user requests the uncertainty of the measurement system, use the first join (measurement systems table + uncertainty of the measurement system table).\n- If the user requests the uncertainty of a specific variable (magnitude) in a report, use the second join (measurement systems table + uncertainty of magnitudes table).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
What is the data type of differential pressure in the measurement system? |
What is uncertainty? |
0.15000000000000002 |
What is the structure of the &&&equipment_data&&& table? |
How are flow computers and measurement systems related? |
0.35000000000000003 |
Find the columns in the flow computer table that identify the flow computer. |
What kind of data store an equipment? |
0.1 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
sentence1, sentence2, and score| sentence1 | sentence2 | score | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence1 | sentence2 | score |
|---|---|---|
How can I filter uncertainty reports by equipment tag? |
How does a flow computer generate and store reports? |
0.09999999999999999 |
What is the purpose of the flow_data table? |
What is uncertainty? |
0.15000000000000002 |
What is the column name for the report date in the Reports table? |
What is equipment calibration? |
0.1 |
CosineSimilarityLoss with these parameters:{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4gradient_accumulation_steps: 4learning_rate: 2e-05warmup_ratio: 0.1overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0307 | 10 | 1.5374 | - |
| 0.0613 | 20 | 1.0251 | - |
| 0.0920 | 30 | 0.361 | - |
| 0.1226 | 40 | 0.1819 | - |
| 0.1533 | 50 | 0.186 | - |
| 0.1839 | 60 | 0.1697 | - |
| 0.2146 | 70 | 0.1437 | - |
| 0.2452 | 80 | 0.172 | - |
| 0.2759 | 90 | 0.1199 | - |
| 0.3065 | 100 | 0.1278 | - |
| 0.3372 | 110 | 0.1037 | - |
| 0.3678 | 120 | 0.1156 | - |
| 0.3985 | 130 | 0.0971 | - |
| 0.4291 | 140 | 0.0911 | - |
| 0.4598 | 150 | 0.1158 | 0.0249 |
| 0.4904 | 160 | 0.0906 | - |
| 0.5211 | 170 | 0.106 | - |
| 0.5517 | 180 | 0.0921 | - |
| 0.5824 | 190 | 0.0748 | - |
| 0.6130 | 200 | 0.0741 | - |
| 0.6437 | 210 | 0.0894 | - |
| 0.6743 | 220 | 0.0815 | - |
| 0.7050 | 230 | 0.0771 | - |
| 0.7356 | 240 | 0.1156 | - |
| 0.7663 | 250 | 0.0857 | - |
| 0.7969 | 260 | 0.0566 | - |
| 0.8276 | 270 | 0.0716 | - |
| 0.8582 | 280 | 0.0662 | - |
| 0.8889 | 290 | 0.0963 | - |
| 0.9195 | 300 | 0.0678 | 0.0212 |
| 0.9502 | 310 | 0.077 | - |
| 0.9808 | 320 | 0.0642 | - |
| 1.0092 | 330 | 0.0725 | - |
| 1.0398 | 340 | 0.0701 | - |
| 1.0705 | 350 | 0.0549 | - |
| 1.1011 | 360 | 0.0699 | - |
| 1.1318 | 370 | 0.0714 | - |
| 1.1625 | 380 | 0.0745 | - |
| 1.1931 | 390 | 0.0754 | - |
| 1.2238 | 400 | 0.0486 | - |
| 1.2544 | 410 | 0.047 | - |
| 1.2851 | 420 | 0.076 | - |
| 1.3157 | 430 | 0.0689 | - |
| 1.3464 | 440 | 0.0629 | - |
| 1.3770 | 450 | 0.0657 | 0.0178 |
| 1.4077 | 460 | 0.0622 | - |
| 1.4383 | 470 | 0.0657 | - |
| 1.4690 | 480 | 0.0498 | - |
| 1.4996 | 490 | 0.0653 | - |
| 1.5303 | 500 | 0.0715 | - |
| 1.5609 | 510 | 0.0615 | - |
| 1.5916 | 520 | 0.0441 | - |
| 1.6222 | 530 | 0.0566 | - |
| 1.6529 | 540 | 0.0524 | - |
| 1.6835 | 550 | 0.0423 | - |
| 1.7142 | 560 | 0.0441 | - |
| 1.7448 | 570 | 0.0553 | - |
| 1.7755 | 580 | 0.0572 | - |
| 1.8061 | 590 | 0.0686 | - |
| 1.8368 | 600 | 0.06 | 0.0146 |
| 1.8674 | 610 | 0.0562 | - |
| 1.8981 | 620 | 0.0517 | - |
| 1.9287 | 630 | 0.0498 | - |
| 1.9594 | 640 | 0.0424 | - |
| 1.9900 | 650 | 0.0729 | - |
| 2.0184 | 660 | 0.0347 | - |
| 2.0490 | 670 | 0.06 | - |
| 2.0797 | 680 | 0.0441 | - |
| 2.1103 | 690 | 0.0409 | - |
| 2.1410 | 700 | 0.0416 | - |
| 2.1716 | 710 | 0.0345 | - |
| 2.2023 | 720 | 0.024 | - |
| 2.2330 | 730 | 0.0458 | - |
| 2.2636 | 740 | 0.0465 | - |
| 2.2943 | 750 | 0.0494 | 0.0132 |
| 2.3249 | 760 | 0.0388 | - |
| 2.3556 | 770 | 0.0363 | - |
| 2.3862 | 780 | 0.0441 | - |
| 2.4169 | 790 | 0.0378 | - |
| 2.4475 | 800 | 0.0484 | - |
| 2.4782 | 810 | 0.051 | - |
| 2.5088 | 820 | 0.0464 | - |
| 2.5395 | 830 | 0.036 | - |
| 2.5701 | 840 | 0.0423 | - |
| 2.6008 | 850 | 0.0278 | - |
| 2.6314 | 860 | 0.0474 | - |
| 2.6621 | 870 | 0.0357 | - |
| 2.6927 | 880 | 0.0386 | - |
| 2.7234 | 890 | 0.0334 | - |
| 2.7540 | 900 | 0.0199 | 0.0127 |
| 2.7847 | 910 | 0.0381 | - |
| 2.8153 | 920 | 0.0415 | - |
| 2.8460 | 930 | 0.0274 | - |
| 2.8766 | 940 | 0.0353 | - |
| 2.9073 | 950 | 0.0423 | - |
| 2.9379 | 960 | 0.0267 | - |
| 2.9686 | 970 | 0.042 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
intfloat/multilingual-e5-large-instruct