|
|
--- |
|
|
license: mit |
|
|
--- |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
<h1 align="center">HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment</h1> |
|
|
|
|
|
### [[`Project Page`](https://humanaesexpert.github.io/HumanAesExpert/)] |
|
|
</div> |
|
|
|
|
|
## Quicker Start with Hugging Face AutoModel |
|
|
> Please use transformers==4.44.2 to ensure the model works normally. |
|
|
|
|
|
|
|
|
```python |
|
|
import numpy as np |
|
|
import torch |
|
|
import torchvision.transforms as T |
|
|
from PIL import Image |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
|
transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
# calculate the existing image aspect ratio |
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
# find the closest aspect ratio to the target |
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
# calculate the target width and height |
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
# resize the image |
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
# split the image |
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
|
image = Image.open(image_file).convert('RGB') |
|
|
transform = build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
path = 'HumanBeauty/HumanAesExpert-1B' |
|
|
model = AutoModel.from_pretrained( |
|
|
path, |
|
|
torch_dtype=torch.float16, |
|
|
low_cpu_mem_usage=True, |
|
|
use_flash_attn=True, |
|
|
trust_remote_code=True).eval().cuda() |
|
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
pixel_values = load_image('./examples/your_image.jpg', max_num=12).to(torch.float16).cuda() |
|
|
generation_config = dict(max_new_tokens=1024, do_sample=True) |
|
|
|
|
|
question = '<image>\nRate the aesthetics of this human picture.' |
|
|
|
|
|
# fast inference, need 1x time |
|
|
pred_score = model.score(tokenizer, pixel_values, question) |
|
|
|
|
|
# slow inference, need 2x time |
|
|
metavoter_score = model.run_metavoter(tokenizer, pixel_values) |
|
|
|
|
|
# get expert scores from the Expert head, include 12 dimensions |
|
|
expert_score, expert_text = model.expert_score(tokenizer,pixel_values) |
|
|
|
|
|
# get expert annotations from the LM head, include 12 dimensions |
|
|
expert_annotataion = model.expert_annotataion(tokenizer, pixel_values, generation_config) |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This project is released under the [MIT license](LICENSE). Parts of this project contain code and models from other sources, which are subject to their respective licenses. |