upgraedd commited on
Commit
04dcb84
·
verified ·
1 Parent(s): 84d764e

Create integrative progression 1

Browse files

added components such as rss integration and refinements

Files changed (1) hide show
  1. integrative progression 1 +256 -0
integrative progression 1 ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import asyncio
2
+ import numpy as np
3
+ from datetime import datetime
4
+ from typing import Dict, List, Any, Optional, Tuple
5
+ import hashlib
6
+ import logging
7
+ from enum import Enum
8
+ import json
9
+ import math
10
+
11
+ # Configure logging
12
+ logging.basicConfig(level=logging.INFO)
13
+ logger = logging.getLogger(__name__)
14
+
15
+ # --- Core AGI Framework ---
16
+ class CognitiveDomain(str, Enum):
17
+ PERCEPTION = "perception"
18
+ REASONING = "reasoning"
19
+ MEMORY = "memory"
20
+ LEARNING = "learning"
21
+ DECISION_MAKING = "decision_making"
22
+ CREATIVITY = "creativity"
23
+
24
+ class NeuralArchitecture:
25
+ """Core neural network architecture simulating cognitive processes"""
26
+ def __init__(self, domain: CognitiveDomain):
27
+ self.domain = domain
28
+ self.weights = self.initialize_weights()
29
+ self.knowledge_graph = {}
30
+
31
+ def initialize_weights(self) -> Dict[str, float]:
32
+ """Initialize neural weights based on cognitive domain"""
33
+ base_weights = {
34
+ 'input_gain': np.random.uniform(0.7, 1.0),
35
+ 'association_strength': np.random.uniform(0.5, 0.9),
36
+ 'memory_decay': 0.05,
37
+ 'learning_rate': 0.1
38
+ }
39
+
40
+ # Domain-specific weight adjustments
41
+ if self.domain == CognitiveDomain.REASONING:
42
+ base_weights.update({'logic_coeff': 0.8, 'uncertainty_threshold': 0.3})
43
+ elif self.domain == CognitiveDomain.LEARNING:
44
+ base_weights.update({'plasticity': 0.9, 'consolidation_factor': 0.75})
45
+
46
+ return base_weights
47
+
48
+ def process_input(self, input_data: Any) -> Dict:
49
+ """Core cognitive processing function"""
50
+ processed = {
51
+ 'input_hash': hashlib.sha256(str(input_data).encode()).hexdigest(),
52
+ 'domain': self.domain.value,
53
+ 'timestamp': datetime.utcnow().isoformat(),
54
+ 'significance': self.calculate_significance(input_data)
55
+ }
56
+ self.update_knowledge_graph(processed)
57
+ return processed
58
+
59
+ def calculate_significance(self, input_data: Any) -> float:
60
+ """Calculate the significance of input based on cognitive weights"""
61
+ complexity = len(str(input_data)) / 1000
62
+ novelty = 1.0 - min(1.0, self.knowledge_graph.get('similarity_index', 0.0))
63
+ return self.weights['input_gain'] * (complexity + novelty) / 2
64
+
65
+ def update_knowledge_graph(self, processed: Dict):
66
+ """Update the system's knowledge representation"""
67
+ node_id = processed['input_hash'][:12]
68
+ self.knowledge_graph[node_id] = {
69
+ 'content': processed,
70
+ 'connections': self.find_semantic_connections(processed),
71
+ 'last_accessed': datetime.utcnow()
72
+ }
73
+
74
+ def find_semantic_connections(self, processed: Dict) -> List[str]:
75
+ """Discover relationships with existing knowledge"""
76
+ return [k for k, v in self.knowledge_graph.items()
77
+ if v['content']['domain'] == processed['domain']]
78
+
79
+ class UnifiedIntelligenceFramework:
80
+ """Advanced AGI system integrating multiple cognitive domains"""
81
+
82
+ def __init__(self):
83
+ self.cognitive_modules = {
84
+ domain: NeuralArchitecture(domain)
85
+ for domain in CognitiveDomain
86
+ }
87
+ self.consciousness_thread = None
88
+ self.global_state = {
89
+ 'activation_level': 0.5,
90
+ 'attention_focus': CognitiveDomain.REASONING,
91
+ 'learning_mode': 'consolidation'
92
+ }
93
+
94
+ async def cognitive_loop(self):
95
+ """Main processing loop simulating continuous cognition"""
96
+ while True:
97
+ # Dynamic attention allocation
98
+ self.adjust_attention()
99
+
100
+ # Cross-domain information processing
101
+ await self.cross_module_synchronization()
102
+
103
+ # Learning and adaptation
104
+ self.adaptive_reweighting()
105
+
106
+ await asyncio.sleep(0.1) # Cognitive cycle
107
+
108
+ def adjust_attention(self):
109
+ """Dynamically shift focus based on system state"""
110
+ if self.global_state['activation_level'] > 0.7:
111
+ self.global_state['attention_focus'] = CognitiveDomain.DECISION_MAKING
112
+ elif self.global_state['activation_level'] < 0.3:
113
+ self.global_state['attention_focus'] = CognitiveDomain.MEMORY
114
+
115
+ async def cross_module_synchronization(self):
116
+ """Facilitate information exchange between cognitive domains"""
117
+ active_module = self.cognitive_modules[self.global_state['attention_focus']]
118
+ shared_data = active_module.knowledge_graph
119
+
120
+ for domain, module in self.cognitive_modules.items():
121
+ if domain != self.global_state['attention_focus']:
122
+ await self.integrate_knowledge(module, shared_data)
123
+
124
+ async def integrate_knowledge(self, target_module: NeuralArchitecture, knowledge: Dict):
125
+ """Asynchronously integrate knowledge across domains"""
126
+ # Simulate neural propagation delay
127
+ await asyncio.sleep(0.01 * len(knowledge))
128
+
129
+ for node_id, node_data in knowledge.items():
130
+ if node_id not in target_module.knowledge_graph:
131
+ target_module.knowledge_graph[node_id] = node_data
132
+ logger.info(f"Knowledge integrated into {target_module.domain.value}")
133
+
134
+ def adaptive_reweighting(self):
135
+ """Modify neural weights based on system performance"""
136
+ for module in self.cognitive_modules.values():
137
+ # Increase plasticity during high activation
138
+ if self.global_state['activation_level'] > 0.6:
139
+ module.weights['learning_rate'] = min(1.0, module.weights['learning_rate'] * 1.1)
140
+
141
+ # Strengthen important connections
142
+ for node_id, node_data in module.knowledge_graph.items():
143
+ if node_data['content']['significance'] > 0.7:
144
+ module.weights['association_strength'] = min(
145
+ 0.95, module.weights['association_strength'] * 1.05
146
+ )
147
+
148
+ def process_input(self, input_data: Any, domain: CognitiveDomain) -> Dict:
149
+ """High-level input processing interface"""
150
+ self.global_state['activation_level'] = min(1.0, self.global_state['activation_level'] + 0.1)
151
+ return self.cognitive_modules[domain].process_input(input_data)
152
+
153
+ def start_cognition(self):
154
+ """Activate the AGI system"""
155
+ if not self.consciousness_thread or self.consciousness_thread.done():
156
+ self.consciousness_thread = asyncio.create_task(self.cognitive_loop())
157
+
158
+ def get_system_state(self) -> Dict:
159
+ """Return current state of the AGI framework"""
160
+ return {
161
+ 'modules': {domain.value: {
162
+ 'node_count': len(module.knowledge_graph),
163
+ 'activation': module.weights['association_strength']
164
+ } for domain, module in self.cognitive_modules.items()},
165
+ 'global_state': self.global_state,
166
+ 'knowledge_volume': sum(len(m.knowledge_graph) for m in self.cognitive_modules.values())
167
+ }
168
+
169
+ # --- Quantum Cognition Extension ---
170
+ class QuantumCognition:
171
+ """Simulate quantum-like properties in cognition"""
172
+
173
+ def __init__(self, agi_system: UnifiedIntelligenceFramework):
174
+ self.agi = agi_system
175
+ self.superposition_states = {}
176
+ self.entanglement_map = {}
177
+
178
+ def create_superposition(self, concept: str, states: List[Any]):
179
+ """Establish conceptual superposition"""
180
+ state_hash = hashlib.sha256(concept.encode()).hexdigest()[:8]
181
+ self.superposition_states[state_hash] = {
182
+ 'concept': concept,
183
+ 'possible_states': states,
184
+ 'probability_vector': [1/len(states)] * len(states)
185
+ }
186
+ return state_hash
187
+
188
+ def collapse_state(self, state_hash: str, context: Dict) -> Any:
189
+ """Collapse superposition based on cognitive context"""
190
+ if state_hash not in self.superposition_states:
191
+ return None
192
+
193
+ state = self.superposition_states[state_hash]
194
+ context_factor = self.calculate_context_influence(context)
195
+
196
+ # Adjust probabilities based on context
197
+ adjusted_probs = [p * context_factor for p in state['probability_vector']]
198
+ total = sum(adjusted_probs)
199
+ normalized_probs = [p/total for p in adjusted_probs]
200
+
201
+ # Select state based on probability distribution
202
+ return np.random.choice(state['possible_states'], p=normalized_probs)
203
+
204
+ def calculate_context_influence(self, context: Dict) -> float:
205
+ """Determine how context affects probability distribution"""
206
+ relevance = min(1.0, len(context) / 10)
207
+ agi_activation = self.agi.global_state['activation_level']
208
+ return 0.5 + (relevance * agi_activation) / 2
209
+
210
+ def create_entanglement(self, concept_a: str, concept_b: str):
211
+ """Establish quantum-like entanglement between concepts"""
212
+ ent_id = f"{concept_a[:4]}-{concept_b[:4]}"
213
+ self.entanglement_map[ent_id] = {
214
+ 'concepts': (concept_a, concept_b),
215
+ 'correlation_strength': 0.75,
216
+ 'last_utilized': datetime.utcnow()
217
+ }
218
+ return ent_id
219
+
220
+ # --- Demonstration ---
221
+ async def demonstrate_agi():
222
+ print("Initializing Advanced AGI Framework...")
223
+ agi_system = UnifiedIntelligenceFramework()
224
+ agi_system.start_cognition()
225
+
226
+ print("\nProcessing multi-domain inputs:")
227
+ # Simulate sensory input
228
+ visual_input = "A red triangle moving quickly to the right"
229
+ agi_system.process_input(visual_input, CognitiveDomain.PERCEPTION)
230
+
231
+ # Process abstract concept
232
+ problem = "Solve climate change through technological innovation"
233
+ result = agi_system.process_input(problem, CognitiveDomain.REASONING)
234
+ print(f"Reasoning result: {result['input_hash']} | Significance: {result['significance']:.2f}")
235
+
236
+ # Check system state
237
+ await asyncio.sleep(0.2) # Allow cognitive loop to run
238
+ state = agi_system.get_system_state()
239
+ print("\nSystem State:")
240
+ print(f"Global Activation: {state['global_state']['activation_level']:.2f}")
241
+ print(f"Knowledge Nodes: {state['knowledge_volume']}")
242
+ print(f"Attention Focus: {state['global_state']['attention_focus'].value}")
243
+
244
+ # Demonstrate quantum cognition
245
+ print("\nActivating Quantum Cognition:")
246
+ quantum = QuantumCognition(agi_system)
247
+ concept = "democracy"
248
+ states = ["representative", "direct", "deliberative", "liquid"]
249
+ sup_id = quantum.create_superposition(concept, states)
250
+
251
+ context = {"political_context": "crisis", "time_constraint": "high"}
252
+ collapsed = quantum.collapse_state(sup_id, context)
253
+ print(f"Concept '{concept}' collapsed to '{collapsed}' in given context")
254
+
255
+ if __name__ == "__main__":
256
+ asyncio.run(demonstrate_agi())