upgraedd commited on
Commit
84d764e
·
verified ·
1 Parent(s): f41111b

Create MAIN_CODE_FULL

Browse files
Files changed (1) hide show
  1. MAIN_CODE_FULL +824 -0
MAIN_CODE_FULL ADDED
@@ -0,0 +1,824 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import aiohttp
2
+ import asyncio
3
+ import numpy as np
4
+ import math
5
+ import logging
6
+ import time
7
+ import psutil
8
+ from datetime import datetime, timedelta
9
+ from typing import Dict, List, Tuple, Optional, Union
10
+ from dataclasses import dataclass, field
11
+ from enum import Enum
12
+ import json
13
+ import hashlib
14
+ from contextlib import asynccontextmanager
15
+ from copy import deepcopy
16
+ from fastapi import FastAPI
17
+ import uvicorn
18
+ from fastapi.responses import JSONResponse, PlainTextResponse
19
+
20
+ # Configure logging
21
+ logging.basicConfig(
22
+ level=logging.INFO,
23
+ format='%(asctime)s - %(name)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
24
+ handlers=[
25
+ logging.StreamHandler(),
26
+ logging.FileHandler("agi_validator.log", mode='a')
27
+ ]
28
+ )
29
+ logger = logging.getLogger("AGI_Validator")
30
+
31
+ # --------------------------
32
+ # ENUMERATIONS
33
+ # --------------------------
34
+ class ValidationStatus(Enum):
35
+ SUCCESS = "success"
36
+ PARTIAL_SUCCESS = "partial_success"
37
+ FAILURE = "failure"
38
+ ERROR = "error"
39
+ INSUFFICIENT_DATA = "insufficient_data"
40
+
41
+ class ReasoningMode(Enum):
42
+ DEDUCTIVE = "deductive"
43
+ INDUCTIVE = "inductive"
44
+ ABDUCTIVE = "abductive"
45
+ BAYESIAN = "bayesian"
46
+ CAUSAL = "causal"
47
+
48
+ class KnowledgeDomain(Enum):
49
+ SCIENCE = "science"
50
+ MATHEMATICS = "mathematics"
51
+ PHILOSOPHY = "philosophy"
52
+ HISTORY = "history"
53
+ MEDICINE = "medicine"
54
+ TECHNOLOGY = "technology"
55
+ SOCIAL_SCIENCE = "social_science"
56
+
57
+ # --------------------------
58
+ # DATA MODELS
59
+ # --------------------------
60
+ @dataclass
61
+ class Evidence:
62
+ evidence_id: str
63
+ strength: float
64
+ reliability: float
65
+ source_quality: float = 0.8
66
+ contradictory: bool = False
67
+ timestamp: datetime = field(default_factory=datetime.utcnow)
68
+ domain: Optional[KnowledgeDomain] = None
69
+
70
+ def __post_init__(self):
71
+ if not (0.0 <= self.strength <= 1.0):
72
+ raise ValueError("Evidence strength must be between 0.0 and 1.0")
73
+ if not (0.0 <= self.reliability <= 1.0):
74
+ raise ValueError("Evidence reliability must be between 0.0 and 1.0")
75
+ if not (0.0 <= self.source_quality <= 1.0):
76
+ raise ValueError("Source quality must be between 0.0 and 1.0")
77
+
78
+ @property
79
+ def weighted_strength(self) -> float:
80
+ return self.strength * self.reliability * self.source_quality
81
+
82
+ def to_dict(self) -> Dict:
83
+ return {
84
+ 'evidence_id': self.evidence_id,
85
+ 'strength': self.strength,
86
+ 'reliability': self.reliability,
87
+ 'source_quality': self.source_quality,
88
+ 'contradictory': self.contradictory,
89
+ 'timestamp': self.timestamp.isoformat(),
90
+ 'domain': self.domain.value if self.domain else None,
91
+ 'weighted_strength': self.weighted_strength
92
+ }
93
+
94
+ @dataclass
95
+ class UniversalClaim:
96
+ claim_id: str
97
+ content: str
98
+ evidence_chain: List[Evidence] = field(default_factory=list)
99
+ reasoning_modes: List[ReasoningMode] = field(default_factory=list)
100
+ sub_domains: List[KnowledgeDomain] = field(default_factory=list)
101
+ causal_mechanisms: List[str] = field(default_factory=list)
102
+ expected_validity: Optional[float] = None
103
+ metadata: Dict = field(default_factory=dict)
104
+
105
+ def __post_init__(self):
106
+ if not self.content.strip():
107
+ raise ValueError("Claim content cannot be empty")
108
+ if self.expected_validity is not None:
109
+ if not (0.0 <= self.expected_validity <= 1.0):
110
+ raise ValueError("Expected validity must be between 0.0 and 1.0")
111
+ if not self.claim_id:
112
+ self.claim_id = self._generate_claim_id()
113
+
114
+ def _generate_claim_id(self) -> str:
115
+ content_hash = hashlib.md5(self.content.encode()).hexdigest()
116
+ return f"claim_{content_hash[:12]}"
117
+
118
+ @property
119
+ def evidence_summary(self) -> Dict:
120
+ if not self.evidence_chain:
121
+ return {'count': 0, 'avg_strength': 0.0, 'avg_reliability': 0.0}
122
+
123
+ strengths = [e.weighted_strength for e in self.evidence_chain]
124
+ reliabilities = [e.reliability for e in self.evidence_chain]
125
+
126
+ return {
127
+ 'count': len(self.evidence_chain),
128
+ 'avg_strength': np.mean(strengths),
129
+ 'avg_reliability': np.mean(reliabilities),
130
+ 'contradictory_count': sum(1 for e in self.evidence_chain if e.contradictory)
131
+ }
132
+
133
+ def to_dict(self) -> Dict:
134
+ return {
135
+ 'claim_id': self.claim_id,
136
+ 'content': self.content,
137
+ 'evidence_chain': [e.to_dict() for e in self.evidence_chain],
138
+ 'reasoning_modes': [m.value for m in self.reasoning_modes],
139
+ 'sub_domains': [d.value for d in self.sub_domains],
140
+ 'causal_mechanisms': self.causal_mechanisms,
141
+ 'expected_validity': self.expected_validity,
142
+ 'evidence_summary': self.evidence_summary,
143
+ 'metadata': self.metadata
144
+ }
145
+
146
+ @dataclass
147
+ class RealTimeDataSource:
148
+ source_id: str
149
+ endpoint: str
150
+ domain: KnowledgeDomain
151
+ refresh_interval: int = 3600
152
+ last_updated: datetime = field(default_factory=datetime.utcnow)
153
+ reliability: float = 0.85
154
+ priority: int = 1
155
+
156
+ def needs_refresh(self) -> bool:
157
+ return (datetime.utcnow() - self.last_updated).total_seconds() > self.refresh_interval
158
+
159
+ @dataclass
160
+ class DomainConstraint:
161
+ domain: KnowledgeDomain
162
+ min_evidence: int = 3
163
+ min_reliability: float = 0.7
164
+ required_reasoning_modes: List[ReasoningMode] = field(default_factory=list)
165
+ complexity_factor: float = 1.0
166
+
167
+ # --------------------------
168
+ # CORE VALIDATOR
169
+ # --------------------------
170
+ class EnhancedAGIValidator:
171
+ def __init__(self,
172
+ mcp_enabled: bool = True,
173
+ mcp_timeout: int = 15,
174
+ max_history: int = 100,
175
+ cache_enabled: bool = True,
176
+ real_time_sources: List[RealTimeDataSource] = None,
177
+ domain_constraints: Dict[KnowledgeDomain, DomainConstraint] = None):
178
+ self.mcp_enabled = mcp_enabled
179
+ self.mcp_timeout = mcp_timeout
180
+ self.max_history = max_history
181
+ self.cache_enabled = cache_enabled
182
+ self.mcp_url = "https://agents-mcp-hackathon-consilium-mcp.hf.space/run/predict"
183
+ self.validation_history = []
184
+ self.validation_cache = {}
185
+ self._session = None
186
+ self._mcp_failures = 0
187
+
188
+ # Real-time data and domain constraints
189
+ self.real_time_sources = real_time_sources or self._default_real_time_sources()
190
+ self.domain_constraints = domain_constraints or self._default_domain_constraints()
191
+ self.data_cache = {}
192
+
193
+ logger.info("Enhanced AGI Validator initialized")
194
+
195
+ # --------------------------
196
+ # HELPER METHODS
197
+ # --------------------------
198
+ def _default_real_time_sources(self) -> List[RealTimeDataSource]:
199
+ return [
200
+ RealTimeDataSource("scientific_journals", "https://api.sciencedirect.com/search",
201
+ KnowledgeDomain.SCIENCE, refresh_interval=86400),
202
+ RealTimeDataSource("medical_db", "https://api.medicalevidence.org/v1/claims",
203
+ KnowledgeDomain.MEDICINE, refresh_interval=3600),
204
+ RealTimeDataSource("historical_archive", "https://api.historydb.org/records",
205
+ KnowledgeDomain.HISTORY, refresh_interval=604800)
206
+ ]
207
+
208
+ def _default_domain_constraints(self) -> Dict[KnowledgeDomain, DomainConstraint]:
209
+ return {
210
+ KnowledgeDomain.MEDICINE: DomainConstraint(
211
+ min_evidence=5, min_reliability=0.85,
212
+ required_reasoning_modes=[ReasoningMode.CAUSAL, ReasoningMode.BAYESIAN],
213
+ complexity_factor=1.2),
214
+ KnowledgeDomain.SCIENCE: DomainConstraint(
215
+ min_evidence=3, min_reliability=0.75,
216
+ required_reasoning_modes=[ReasoningMode.DEDUCTIVE],
217
+ complexity_factor=1.0),
218
+ KnowledgeDomain.HISTORY: DomainConstraint(
219
+ min_evidence=2, min_reliability=0.65, complexity_factor=0.9)
220
+ }
221
+
222
+ def _get_cache_key(self, claim: UniversalClaim) -> str:
223
+ claim_data = claim.to_dict()
224
+ claim_json = json.dumps(claim_data, sort_keys=True)
225
+ return hashlib.sha256(claim_json.encode()).hexdigest()
226
+
227
+ @asynccontextmanager
228
+ async def _get_session(self):
229
+ if self._session is None:
230
+ connector = aiohttp.TCPConnector(limit=10, limit_per_host=5)
231
+ timeout = aiohttp.ClientTimeout(total=self.mcp_timeout)
232
+ self._session = aiohttp.ClientSession(connector=connector, timeout=timeout)
233
+
234
+ try:
235
+ yield self._session
236
+ except Exception as e:
237
+ logger.error(f"Session error: {e}")
238
+ raise
239
+
240
+ async def close(self):
241
+ if self._session:
242
+ await self._session.close()
243
+ self._session = None
244
+
245
+ # --------------------------
246
+ # REAL-TIME DATA INTEGRATION
247
+ # --------------------------
248
+ async def _fetch_real_time_data(self, source: RealTimeDataSource, query: str) -> Dict:
249
+ cache_key = f"{source.source_id}_{hashlib.md5(query.encode()).hexdigest()}"
250
+
251
+ if self.cache_enabled and cache_key in self.data_cache:
252
+ if not source.needs_refresh():
253
+ return self.data_cache[cache_key]
254
+
255
+ try:
256
+ async with self._get_session() as session:
257
+ params = {"query": query, "limit": 5, "format": "json"}
258
+ headers = {"Accept": "application/json"}
259
+
260
+ async with session.get(
261
+ source.endpoint, params=params, headers=headers,
262
+ timeout=source.refresh_interval/10
263
+ ) as response:
264
+ if response.status == 200:
265
+ data = await response.json()
266
+ result = {
267
+ "data": data,
268
+ "timestamp": datetime.utcnow(),
269
+ "source": source.source_id
270
+ }
271
+ self.data_cache[cache_key] = result
272
+ source.last_updated = datetime.utcnow()
273
+ return result
274
+ else:
275
+ logger.warning(f"Data source {source.source_id} returned status {response.status}")
276
+ return {"error": f"HTTP {response.status}", "source": source.source_id}
277
+
278
+ except asyncio.TimeoutError:
279
+ logger.warning(f"Data source {source.source_id} timed out")
280
+ return {"error": "timeout", "source": source.source_id}
281
+ except Exception as e:
282
+ logger.error(f"Error fetching from {source.source_id}: {str(e)}")
283
+ return {"error": str(e), "source": source.source_id}
284
+
285
+ async def _enrich_evidence_with_real_time_data(self, claim: UniversalClaim) -> UniversalClaim:
286
+ domain_sources = [
287
+ s for s in sorted(self.real_time_sources, key=lambda x: x.priority, reverse=True)
288
+ if any(d in claim.sub_domains for d in [s.domain])
289
+ ]
290
+
291
+ if not domain_sources:
292
+ return claim
293
+
294
+ tasks = [self._fetch_real_time_data(source, claim.content) for source in domain_sources]
295
+ results = await asyncio.gather(*tasks)
296
+
297
+ new_evidence = []
298
+ for result in results:
299
+ if "error" in result:
300
+ continue
301
+
302
+ evidence_strength = 0.7
303
+ evidence_reliability = result["source"].get("reliability", 0.8)
304
+
305
+ new_evidence.append(Evidence(
306
+ evidence_id=f"rt_{result['source']}_{time.time_ns()}",
307
+ strength=evidence_strength,
308
+ reliability=evidence_reliability,
309
+ source_quality=0.9,
310
+ domain=next((s for s in self.real_time_sources if s.source_id == result["source"]), None).domain,
311
+ timestamp=datetime.utcnow()
312
+ ))
313
+
314
+ claim.evidence_chain.extend(new_evidence)
315
+ return claim
316
+
317
+ # --------------------------
318
+ # DOMAIN CONSTRAINT HANDLING
319
+ # --------------------------
320
+ def _apply_domain_constraints(self, claim: UniversalClaim) -> Tuple[UniversalClaim, List[str]]:
321
+ constraint_violations = []
322
+ enhanced_claim = deepcopy(claim)
323
+
324
+ for domain in claim.sub_domains:
325
+ constraint = self.domain_constraints.get(domain)
326
+ if not constraint:
327
+ continue
328
+
329
+ domain_evidence = [e for e in claim.evidence_chain if e.domain == domain]
330
+ if len(domain_evidence) < constraint.min_evidence:
331
+ constraint_violations.append(
332
+ f"Domain {domain.value} requires at least {constraint.min_evidence} evidence pieces"
333
+ )
334
+
335
+ if domain_evidence:
336
+ avg_reliability = np.mean([e.reliability for e in domain_evidence])
337
+ if avg_reliability < constraint.min_reliability:
338
+ constraint_violations.append(
339
+ f"Domain {domain.value} requires minimum evidence reliability of {constraint.min_reliability}"
340
+ )
341
+
342
+ for mode in constraint.required_reasoning_modes:
343
+ if mode not in claim.reasoning_modes:
344
+ enhanced_claim.reasoning_modes.append(mode)
345
+ constraint_violations.append(
346
+ f"Added required reasoning mode {mode.value} for domain {domain.value}"
347
+ )
348
+
349
+ return enhanced_claim, constraint_violations
350
+
351
+ # --------------------------
352
+ # MCP CONSENSUS COMPONENT
353
+ # --------------------------
354
+ async def _get_mcp_consensus(self, claim: UniversalClaim) -> Dict:
355
+ if not self.mcp_enabled:
356
+ logger.info("mCP consensus protocol disabled")
357
+ return self._get_fallback_consensus("mCP disabled")
358
+
359
+ if self._mcp_failures >= 3:
360
+ logger.error("mCP circuit breaker triggered - using fallback")
361
+ return self._get_fallback_consensus("circuit_breaker")
362
+
363
+ cache_key = self._get_cache_key(claim) if self.cache_enabled else None
364
+ if cache_key and cache_key in self.validation_cache:
365
+ logger.info("Using cached mCP consensus")
366
+ return self.validation_cache[cache_key]
367
+
368
+ payload = {
369
+ "claim_text": claim.content,
370
+ "domains": [d.value for d in claim.sub_domains],
371
+ "reasoning_modes": [m.value for m in claim.reasoning_modes],
372
+ "evidence_count": len(claim.evidence_chain),
373
+ "evidence_summary": claim.evidence_summary,
374
+ "causal_mechanisms": claim.causal_mechanisms,
375
+ "validation_mode": "full_mesh",
376
+ "rounds": 3
377
+ }
378
+
379
+ start_time = time.monotonic()
380
+
381
+ try:
382
+ async with self._get_session() as session:
383
+ async with session.post(self.mcp_url, json=payload) as response:
384
+ if response.status == 200:
385
+ result = await response.json()
386
+ elapsed = time.monotonic() - start_time
387
+
388
+ mcp_result = {
389
+ **result.get("data", {}),
390
+ "processing_time": elapsed,
391
+ "reliability": 1.0,
392
+ "cache_hit": False
393
+ }
394
+
395
+ if cache_key:
396
+ self.validation_cache[cache_key] = mcp_result
397
+
398
+ logger.info(f"mCP consensus received in {elapsed:.2f}s")
399
+ self._mcp_failures = 0
400
+ return mcp_result
401
+ else:
402
+ logger.warning(f"mCP returned status {response.status}")
403
+ self._mcp_failures += 1
404
+ return self._get_fallback_consensus(f"HTTP {response.status}")
405
+
406
+ except asyncio.TimeoutError:
407
+ logger.warning("mCP request timed out")
408
+ self._mcp_failures += 1
409
+ return self._get_fallback_consensus("timeout")
410
+ except Exception as e:
411
+ logger.exception(f"Error in mCP request: {str(e)}")
412
+ self._mcp_failures += 1
413
+ return self._get_fallback_consensus(f"error: {str(e)}")
414
+
415
+ def _get_fallback_consensus(self, reason: str = "unknown") -> Dict:
416
+ return {
417
+ "consensus_score": 0.5,
418
+ "confidence_interval": [0.4, 0.6],
419
+ "expert_notes": [f"Consensus service unavailable: {reason}"],
420
+ "reliability": 0.0,
421
+ "processing_time": 0.0,
422
+ "fallback_reason": reason
423
+ }
424
+
425
+ # --------------------------
426
+ # ANALYTICAL COMPONENTS
427
+ # --------------------------
428
+ async def _perform_reasoning_analysis(self, claim: UniversalClaim) -> Dict:
429
+ start_time = time.monotonic()
430
+
431
+ try:
432
+ results = {}
433
+
434
+ # Bayesian reasoning
435
+ if ReasoningMode.BAYESIAN in claim.reasoning_modes:
436
+ prior = 0.5
437
+ evidence_weights = [e.weighted_strength for e in claim.evidence_chain]
438
+ if evidence_weights:
439
+ likelihood = np.mean(evidence_weights)
440
+ posterior = (likelihood * prior) / ((likelihood * prior) + ((1 - likelihood) * (1 - prior)))
441
+ results['bayesian'] = {
442
+ 'prior': prior,
443
+ 'likelihood': likelihood,
444
+ 'posterior': posterior
445
+ }
446
+
447
+ # Causal reasoning
448
+ if ReasoningMode.CAUSAL in claim.reasoning_modes:
449
+ causal_strength = len(claim.causal_mechanisms) / max(5, len(claim.causal_mechanisms))
450
+ results['causal'] = {
451
+ 'causal_coherence': min(0.95, 0.5 + causal_strength * 0.4),
452
+ 'mechanism_count': len(claim.causal_mechanisms)
453
+ }
454
+
455
+ # Deductive reasoning
456
+ if ReasoningMode.DEDUCTIVE in claim.reasoning_modes:
457
+ contradictory_evidence = sum(1 for e in claim.evidence_chain if e.contradictory)
458
+ consistency = max(0.1, 1.0 - (contradictory_evidence / max(1, len(claim.evidence_chain))))
459
+ results['deductive'] = {'logical_consistency': consistency}
460
+
461
+ processing_time = time.monotonic() - start_time
462
+
463
+ return {
464
+ **results,
465
+ 'processing_time': processing_time,
466
+ 'reasoning_modes_used': [m.value for m in claim.reasoning_modes]
467
+ }
468
+
469
+ except Exception as e:
470
+ logger.error(f"Reasoning analysis failed: {str(e)}")
471
+ return {
472
+ 'error': f"Reasoning analysis failed: {str(e)}",
473
+ 'processing_time': time.monotonic() - start_time
474
+ }
475
+
476
+ async def _analyze_evidence_quality(self, claim: UniversalClaim) -> Dict:
477
+ start_time = time.monotonic()
478
+
479
+ try:
480
+ if not claim.evidence_chain:
481
+ return {
482
+ 'evidence_score': 0.0,
483
+ 'evidence_count': 0,
484
+ 'quality_factors': {'no_evidence': True},
485
+ 'processing_time': time.monotonic() - start_time
486
+ }
487
+
488
+ strengths = [e.weighted_strength for e in claim.evidence_chain]
489
+ reliabilities = [e.reliability for e in claim.evidence_chain]
490
+ source_qualities = [e.source_quality for e in claim.evidence_chain]
491
+
492
+ domains = set(e.domain for e in claim.evidence_chain if e.domain)
493
+ domain_diversity = len(domains) / max(1, len(KnowledgeDomain))
494
+
495
+ contradictory_count = sum(1 for e in claim.evidence_chain if e.contradictory)
496
+ contradiction_penalty = contradictory_count / len(claim.evidence_chain)
497
+
498
+ base_score = np.mean(strengths)
499
+ reliability_bonus = (np.mean(reliabilities) - 0.5) * 0.2
500
+ source_bonus = (np.mean(source_qualities) - 0.5) * 0.1
501
+ diversity_bonus = domain_diversity * 0.1
502
+
503
+ evidence_score = max(0.0, min(1.0,
504
+ base_score + reliability_bonus + source_bonus + diversity_bonus - contradiction_penalty
505
+ ))
506
+
507
+ return {
508
+ 'evidence_score': evidence_score,
509
+ 'evidence_count': len(claim.evidence_chain),
510
+ 'quality_factors': {
511
+ 'base_score': base_score,
512
+ 'reliability_bonus': reliability_bonus,
513
+ 'source_bonus': source_bonus,
514
+ 'diversity_bonus': diversity_bonus,
515
+ 'contradiction_penalty': contradiction_penalty,
516
+ 'domain_diversity': domain_diversity
517
+ },
518
+ 'processing_time': time.monotonic() - start_time
519
+ }
520
+
521
+ except Exception as e:
522
+ logger.error(f"Evidence analysis failed: {str(e)}")
523
+ return {
524
+ 'evidence_score': 0.5,
525
+ 'evidence_count': len(claim.evidence_chain),
526
+ 'error': str(e),
527
+ 'processing_time': time.monotonic() - start_time
528
+ }
529
+
530
+ async def _metacognitive_assessment(self, claim: UniversalClaim) -> Dict:
531
+ start_time = time.monotonic()
532
+
533
+ try:
534
+ biases_detected = []
535
+
536
+ # Confirmation bias detection
537
+ if claim.evidence_chain:
538
+ supporting = sum(1 for e in claim.evidence_chain if not e.contradictory)
539
+ contradicting = sum(1 for e in claim.evidence_chain if e.contradictory)
540
+ if supporting > 0 and contradicting == 0:
541
+ biases_detected.append("potential_confirmation_bias")
542
+
543
+ # Availability bias
544
+ recent_evidence = sum(1 for e in claim.evidence_chain
545
+ if (datetime.utcnow() - e.timestamp).days < 30)
546
+ if recent_evidence / max(1, len(claim.evidence_chain)) > 0.8:
547
+ biases_detected.append("potential_availability_bias")
548
+
549
+ # Calculate overall quality
550
+ complexity_factor = len(claim.sub_domains) / max(1, len(KnowledgeDomain))
551
+ reasoning_diversity = len(claim.reasoning_modes) / max(1, len(ReasoningMode))
552
+
553
+ overall_quality = (
554
+ 0.4 * (1.0 - len(biases_detected) / 5) +
555
+ 0.3 * complexity_factor +
556
+ 0.3 * reasoning_diversity
557
+ )
558
+
559
+ return {
560
+ 'overall_quality': max(0.0, min(1.0, overall_quality)),
561
+ 'detected_biases': biases_detected,
562
+ 'bias_score': len(biases_detected) / 5,
563
+ 'complexity_factor': complexity_factor,
564
+ 'reasoning_diversity': reasoning_diversity,
565
+ 'processing_time': time.monotonic() - start_time
566
+ }
567
+ except Exception as e:
568
+ logger.error(f"Metacognitive assessment failed: {str(e)}")
569
+ return {
570
+ 'error': f"Metacognitive assessment failed: {str(e)}",
571
+ 'processing_time': time.monotonic() - start_time
572
+ }
573
+
574
+ def _calculate_dynamic_threshold(self, evidence_analysis: Dict, complexity_analysis: Dict) -> float:
575
+ try:
576
+ base_threshold = 0.6
577
+ evidence_score = evidence_analysis.get('evidence_score', 0.5)
578
+ evidence_count = evidence_analysis.get('evidence_count', 0)
579
+ contradiction_penalty = evidence_analysis.get('quality_factors', {}).get('contradiction_penalty', 0)
580
+
581
+ complexity_score = complexity_analysis.get('overall_complexity', 0.5)
582
+ domain_complexity = complexity_analysis.get('complexity_factors', {}).get('domain_complexity', 0)
583
+ reasoning_complexity = complexity_analysis.get('complexity_factors', {}).get('reasoning_complexity', 0)
584
+
585
+ evidence_factor = max(0.0, 0.2 * (0.7 - evidence_score))
586
+ count_factor = max(0.0, 0.15 * (1 - min(1.0, evidence_count / 5)))
587
+ contradiction_factor = min(0.2, contradiction_penalty * 0.3)
588
+ complexity_factor = min(0.25, complexity_score * 0.3)
589
+
590
+ adjustment = evidence_factor + count_factor + contradiction_factor + complexity_factor
591
+ dynamic_threshold = base_threshold - adjustment
592
+ return max(0.3, min(0.8, dynamic_threshold))
593
+
594
+ except Exception as e:
595
+ logger.error(f"Dynamic threshold calculation failed: {str(e)}")
596
+ return 0.6
597
+
598
+ # --------------------------
599
+ # CORE VALIDATION PIPELINE
600
+ # --------------------------
601
+ async def validate_knowledge_claim(self, claim: UniversalClaim) -> Dict:
602
+ try:
603
+ # Apply domain constraints
604
+ enhanced_claim, constraint_violations = self._apply_domain_constraints(claim)
605
+
606
+ # Enhance with real-time data
607
+ enhanced_claim = await self._enrich_evidence_with_real_time_data(enhanced_claim)
608
+
609
+ # Parallel processing of analytical components
610
+ evidence_task = self._analyze_evidence_quality(enhanced_claim)
611
+ reasoning_task = self._perform_reasoning_analysis(enhanced_claim)
612
+ metacog_task = self._metacognitive_assessment(enhanced_claim)
613
+ mcp_task = self._get_mcp_consensus(enhanced_claim)
614
+
615
+ results = await asyncio.gather(
616
+ evidence_task, reasoning_task, metacog_task, mcp_task
617
+ )
618
+ evidence_analysis, reasoning_analysis, metacog_analysis, mcp_analysis = results
619
+
620
+ # Dynamic threshold calculation
621
+ dynamic_threshold = self._calculate_dynamic_threshold(
622
+ evidence_analysis, metacog_analysis
623
+ )
624
+
625
+ # Calculate overall validity
626
+ evidence_weight = 0.4
627
+ reasoning_weight = 0.3
628
+ mcp_weight = 0.2
629
+ metacog_weight = 0.1
630
+
631
+ evidence_score = evidence_analysis.get('evidence_score', 0.0)
632
+ reasoning_score = reasoning_analysis.get('bayesian', {}).get('posterior', 0.5) if 'bayesian' in reasoning_analysis else 0.5
633
+ mcp_score = mcp_analysis.get('consensus_score', 0.5)
634
+ metacog_score = metacog_analysis.get('overall_quality', 0.5)
635
+
636
+ overall_validity = (
637
+ evidence_weight * evidence_score +
638
+ reasoning_weight * reasoning_score +
639
+ mcp_weight * mcp_score +
640
+ metacog_weight * metacog_score
641
+ )
642
+
643
+ # Determine validation status
644
+ status = ValidationStatus.FAILURE
645
+ if overall_validity >= dynamic_threshold:
646
+ status = ValidationStatus.SUCCESS if overall_validity >= 0.8 else ValidationStatus.PARTIAL_SUCCESS
647
+ elif evidence_analysis.get('evidence_count', 0) < 3:
648
+ status = ValidationStatus.INSUFFICIENT_DATA
649
+
650
+ # Apply domain complexity adjustments
651
+ complexity_adjustment = 1.0
652
+ for domain in enhanced_claim.sub_domains:
653
+ if domain in self.domain_constraints:
654
+ constraint = self.domain_constraints[domain]
655
+ complexity_adjustment *= constraint.complexity_factor
656
+ overall_validity = min(1.0, overall_validity * complexity_adjustment)
657
+
658
+ # Prepare report
659
+ report = {
660
+ "claim_id": enhanced_claim.claim_id,
661
+ "status": status.value,
662
+ "overall_validity": overall_validity,
663
+ "dynamic_threshold": dynamic_threshold,
664
+ "evidence_analysis": evidence_analysis,
665
+ "reasoning_analysis": reasoning_analysis,
666
+ "metacognitive_analysis": metacog_analysis,
667
+ "mcp_analysis": mcp_analysis,
668
+ "domain_constraints": {
669
+ "constraint_violations": constraint_violations,
670
+ "constraints_applied": [d.value for d in enhanced_claim.sub_domains
671
+ if d in self.domain_constraints]
672
+ },
673
+ "timestamp": datetime.utcnow().isoformat()
674
+ }
675
+
676
+ # Add to history
677
+ self.validation_history.append(report)
678
+ if len(self.validation_history) > self.max_history:
679
+ self.validation_history.pop(0)
680
+
681
+ return report
682
+
683
+ except Exception as e:
684
+ logger.exception(f"Validation failed: {str(e)}")
685
+ return await self._fallback_validation(claim, str(e))
686
+
687
+ async def _fallback_validation(self, claim: UniversalClaim, error: str) -> Dict:
688
+ try:
689
+ evidence_count = len(claim.evidence_chain)
690
+ evidence_score = np.mean([e.weighted_strength for e in claim.evidence_chain]) if evidence_count > 0 else 0.0
691
+ validity = min(0.9, max(0.1, evidence_score * 0.8))
692
+
693
+ return {
694
+ "claim_id": claim.claim_id,
695
+ "status": ValidationStatus.ERROR.value,
696
+ "fallback_validity": validity,
697
+ "evidence_count": evidence_count,
698
+ "error": error,
699
+ "timestamp": datetime.utcnow().isoformat(),
700
+ "recommendations": [
701
+ "System encountered an error - results are approximate",
702
+ "Retry validation after system maintenance"
703
+ ]
704
+ }
705
+ except Exception as fallback_error:
706
+ logger.error(f"Fallback validation failed: {str(fallback_error)}")
707
+ return {
708
+ "claim_id": claim.claim_id,
709
+ "status": ValidationStatus.ERROR.value,
710
+ "error": f"Primary: {error}, Fallback: {str(fallback_error)}",
711
+ "timestamp": datetime.utcnow().isoformat()
712
+ }
713
+
714
+ # --------------------------
715
+ # ADDITIONAL FUNCTIONALITY
716
+ # --------------------------
717
+ def export_validation_history(self, format: str = "json") -> Union[Dict, str]:
718
+ if format == "json":
719
+ return self.validation_history
720
+ elif format == "csv":
721
+ csv_lines = ["claim_id,status,validity,timestamp"]
722
+ for entry in self.validation_history:
723
+ csv_lines.append(
724
+ f"{entry['claim_id']},{entry['status']},{entry.get('overall_validity', 0.0)},{entry['timestamp']}"
725
+ )
726
+ return "\n".join(csv_lines)
727
+ else:
728
+ return str(self.validation_history)
729
+
730
+ def get_validation_statistics(self) -> Dict:
731
+ status_counts = {status.value: 0 for status in ValidationStatus}
732
+ validities = []
733
+
734
+ for entry in self.validation_history:
735
+ status_counts[entry["status"]] += 1
736
+ if "overall_validity" in entry:
737
+ validities.append(entry["overall_validity"])
738
+
739
+ return {
740
+ "total_validations": len(self.validation_history),
741
+ "status_distribution": status_counts,
742
+ "average_validity": np.mean(validities) if validities else 0.0,
743
+ "median_validity": np.median(validities) if validities else 0.0,
744
+ "last_validation": self.validation_history[-1] if self.validation_history else None
745
+ }
746
+
747
+ # --------------------------
748
+ # UI COMPONENT
749
+ # --------------------------
750
+ class AGIValidatorUI:
751
+ def __init__(self, validator: EnhancedAGIValidator):
752
+ self.validator = validator
753
+ self.app = FastAPI()
754
+ self._setup_routes()
755
+
756
+ def _setup_routes(self):
757
+ self.app.post("/validate")(self.validate_claim_endpoint)
758
+ self.app.get("/history")(self.get_history)
759
+ self.app.get("/stats")(self.get_statistics)
760
+
761
+ async def validate_claim_endpoint(self, claim_data: dict):
762
+ try:
763
+ claim = UniversalClaim(
764
+ claim_id=claim_data.get("claim_id", ""),
765
+ content=claim_data["content"],
766
+ evidence_chain=[
767
+ Evidence(**e) for e in claim_data.get("evidence_chain", [])
768
+ ],
769
+ reasoning_modes=[ReasoningMode(m) for m in claim_data.get("reasoning_modes", [])],
770
+ sub_domains=[KnowledgeDomain(d) for d in claim_data.get("sub_domains", [])],
771
+ causal_mechanisms=claim_data.get("causal_mechanisms", []),
772
+ expected_validity=claim_data.get("expected_validity")
773
+ )
774
+
775
+ result = await self.validator.validate_knowledge_claim(claim)
776
+ return JSONResponse(content=result)
777
+ except Exception as e:
778
+ return JSONResponse(
779
+ status_code=400,
780
+ content={"error": str(e)}
781
+ )
782
+
783
+ async def get_history(self, format: str = "json", limit: int = 10):
784
+ history = self.validator.validation_history[-limit:]
785
+ if format == "json":
786
+ return history
787
+ else:
788
+ return PlainTextResponse(self.validator.export_validation_history(format))
789
+
790
+ async def get_statistics(self):
791
+ return self.validator.get_validation_statistics()
792
+
793
+ # --------------------------
794
+ # MAIN EXECUTION ◉⃤
795
+ # --------------------------
796
+ async def main():
797
+ # Initialize with real-time data sources
798
+ real_time_sources = [
799
+ RealTimeDataSource(
800
+ "ai_research_db",
801
+ "https://api.ai-research.org/v1/validate",
802
+ KnowledgeDomain.TECHNOLOGY,
803
+ refresh_interval=1800
804
+ ),
805
+ RealTimeDataSource(
806
+ "climate_data",
807
+ "https://api.climate.gov/evidence",
808
+ KnowledgeDomain.SCIENCE,
809
+ priority=2
810
+ )
811
+ ]
812
+
813
+ # Create enhanced validator
814
+ validator = EnhancedAGIValidator(
815
+ mcp_enabled=True,
816
+ real_time_sources=real_time_sources
817
+ )
818
+
819
+ # Create UI service
820
+ ui = AGIValidatorUI(validator)
821
+ uvicorn.run(ui.app, host="0.0.0.0", port=8000)
822
+
823
+ if __name__ == "__main__":
824
+ asyncio.run(main())