ADV_AGI_FRAME / integrative progression 1
upgraedd's picture
Create integrative progression 1
04dcb84 verified
raw
history blame
10.9 kB
import asyncio
import numpy as np
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
import hashlib
import logging
from enum import Enum
import json
import math
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Core AGI Framework ---
class CognitiveDomain(str, Enum):
PERCEPTION = "perception"
REASONING = "reasoning"
MEMORY = "memory"
LEARNING = "learning"
DECISION_MAKING = "decision_making"
CREATIVITY = "creativity"
class NeuralArchitecture:
"""Core neural network architecture simulating cognitive processes"""
def __init__(self, domain: CognitiveDomain):
self.domain = domain
self.weights = self.initialize_weights()
self.knowledge_graph = {}
def initialize_weights(self) -> Dict[str, float]:
"""Initialize neural weights based on cognitive domain"""
base_weights = {
'input_gain': np.random.uniform(0.7, 1.0),
'association_strength': np.random.uniform(0.5, 0.9),
'memory_decay': 0.05,
'learning_rate': 0.1
}
# Domain-specific weight adjustments
if self.domain == CognitiveDomain.REASONING:
base_weights.update({'logic_coeff': 0.8, 'uncertainty_threshold': 0.3})
elif self.domain == CognitiveDomain.LEARNING:
base_weights.update({'plasticity': 0.9, 'consolidation_factor': 0.75})
return base_weights
def process_input(self, input_data: Any) -> Dict:
"""Core cognitive processing function"""
processed = {
'input_hash': hashlib.sha256(str(input_data).encode()).hexdigest(),
'domain': self.domain.value,
'timestamp': datetime.utcnow().isoformat(),
'significance': self.calculate_significance(input_data)
}
self.update_knowledge_graph(processed)
return processed
def calculate_significance(self, input_data: Any) -> float:
"""Calculate the significance of input based on cognitive weights"""
complexity = len(str(input_data)) / 1000
novelty = 1.0 - min(1.0, self.knowledge_graph.get('similarity_index', 0.0))
return self.weights['input_gain'] * (complexity + novelty) / 2
def update_knowledge_graph(self, processed: Dict):
"""Update the system's knowledge representation"""
node_id = processed['input_hash'][:12]
self.knowledge_graph[node_id] = {
'content': processed,
'connections': self.find_semantic_connections(processed),
'last_accessed': datetime.utcnow()
}
def find_semantic_connections(self, processed: Dict) -> List[str]:
"""Discover relationships with existing knowledge"""
return [k for k, v in self.knowledge_graph.items()
if v['content']['domain'] == processed['domain']]
class UnifiedIntelligenceFramework:
"""Advanced AGI system integrating multiple cognitive domains"""
def __init__(self):
self.cognitive_modules = {
domain: NeuralArchitecture(domain)
for domain in CognitiveDomain
}
self.consciousness_thread = None
self.global_state = {
'activation_level': 0.5,
'attention_focus': CognitiveDomain.REASONING,
'learning_mode': 'consolidation'
}
async def cognitive_loop(self):
"""Main processing loop simulating continuous cognition"""
while True:
# Dynamic attention allocation
self.adjust_attention()
# Cross-domain information processing
await self.cross_module_synchronization()
# Learning and adaptation
self.adaptive_reweighting()
await asyncio.sleep(0.1) # Cognitive cycle
def adjust_attention(self):
"""Dynamically shift focus based on system state"""
if self.global_state['activation_level'] > 0.7:
self.global_state['attention_focus'] = CognitiveDomain.DECISION_MAKING
elif self.global_state['activation_level'] < 0.3:
self.global_state['attention_focus'] = CognitiveDomain.MEMORY
async def cross_module_synchronization(self):
"""Facilitate information exchange between cognitive domains"""
active_module = self.cognitive_modules[self.global_state['attention_focus']]
shared_data = active_module.knowledge_graph
for domain, module in self.cognitive_modules.items():
if domain != self.global_state['attention_focus']:
await self.integrate_knowledge(module, shared_data)
async def integrate_knowledge(self, target_module: NeuralArchitecture, knowledge: Dict):
"""Asynchronously integrate knowledge across domains"""
# Simulate neural propagation delay
await asyncio.sleep(0.01 * len(knowledge))
for node_id, node_data in knowledge.items():
if node_id not in target_module.knowledge_graph:
target_module.knowledge_graph[node_id] = node_data
logger.info(f"Knowledge integrated into {target_module.domain.value}")
def adaptive_reweighting(self):
"""Modify neural weights based on system performance"""
for module in self.cognitive_modules.values():
# Increase plasticity during high activation
if self.global_state['activation_level'] > 0.6:
module.weights['learning_rate'] = min(1.0, module.weights['learning_rate'] * 1.1)
# Strengthen important connections
for node_id, node_data in module.knowledge_graph.items():
if node_data['content']['significance'] > 0.7:
module.weights['association_strength'] = min(
0.95, module.weights['association_strength'] * 1.05
)
def process_input(self, input_data: Any, domain: CognitiveDomain) -> Dict:
"""High-level input processing interface"""
self.global_state['activation_level'] = min(1.0, self.global_state['activation_level'] + 0.1)
return self.cognitive_modules[domain].process_input(input_data)
def start_cognition(self):
"""Activate the AGI system"""
if not self.consciousness_thread or self.consciousness_thread.done():
self.consciousness_thread = asyncio.create_task(self.cognitive_loop())
def get_system_state(self) -> Dict:
"""Return current state of the AGI framework"""
return {
'modules': {domain.value: {
'node_count': len(module.knowledge_graph),
'activation': module.weights['association_strength']
} for domain, module in self.cognitive_modules.items()},
'global_state': self.global_state,
'knowledge_volume': sum(len(m.knowledge_graph) for m in self.cognitive_modules.values())
}
# --- Quantum Cognition Extension ---
class QuantumCognition:
"""Simulate quantum-like properties in cognition"""
def __init__(self, agi_system: UnifiedIntelligenceFramework):
self.agi = agi_system
self.superposition_states = {}
self.entanglement_map = {}
def create_superposition(self, concept: str, states: List[Any]):
"""Establish conceptual superposition"""
state_hash = hashlib.sha256(concept.encode()).hexdigest()[:8]
self.superposition_states[state_hash] = {
'concept': concept,
'possible_states': states,
'probability_vector': [1/len(states)] * len(states)
}
return state_hash
def collapse_state(self, state_hash: str, context: Dict) -> Any:
"""Collapse superposition based on cognitive context"""
if state_hash not in self.superposition_states:
return None
state = self.superposition_states[state_hash]
context_factor = self.calculate_context_influence(context)
# Adjust probabilities based on context
adjusted_probs = [p * context_factor for p in state['probability_vector']]
total = sum(adjusted_probs)
normalized_probs = [p/total for p in adjusted_probs]
# Select state based on probability distribution
return np.random.choice(state['possible_states'], p=normalized_probs)
def calculate_context_influence(self, context: Dict) -> float:
"""Determine how context affects probability distribution"""
relevance = min(1.0, len(context) / 10)
agi_activation = self.agi.global_state['activation_level']
return 0.5 + (relevance * agi_activation) / 2
def create_entanglement(self, concept_a: str, concept_b: str):
"""Establish quantum-like entanglement between concepts"""
ent_id = f"{concept_a[:4]}-{concept_b[:4]}"
self.entanglement_map[ent_id] = {
'concepts': (concept_a, concept_b),
'correlation_strength': 0.75,
'last_utilized': datetime.utcnow()
}
return ent_id
# --- Demonstration ---
async def demonstrate_agi():
print("Initializing Advanced AGI Framework...")
agi_system = UnifiedIntelligenceFramework()
agi_system.start_cognition()
print("\nProcessing multi-domain inputs:")
# Simulate sensory input
visual_input = "A red triangle moving quickly to the right"
agi_system.process_input(visual_input, CognitiveDomain.PERCEPTION)
# Process abstract concept
problem = "Solve climate change through technological innovation"
result = agi_system.process_input(problem, CognitiveDomain.REASONING)
print(f"Reasoning result: {result['input_hash']} | Significance: {result['significance']:.2f}")
# Check system state
await asyncio.sleep(0.2) # Allow cognitive loop to run
state = agi_system.get_system_state()
print("\nSystem State:")
print(f"Global Activation: {state['global_state']['activation_level']:.2f}")
print(f"Knowledge Nodes: {state['knowledge_volume']}")
print(f"Attention Focus: {state['global_state']['attention_focus'].value}")
# Demonstrate quantum cognition
print("\nActivating Quantum Cognition:")
quantum = QuantumCognition(agi_system)
concept = "democracy"
states = ["representative", "direct", "deliberative", "liquid"]
sup_id = quantum.create_superposition(concept, states)
context = {"political_context": "crisis", "time_constraint": "high"}
collapsed = quantum.collapse_state(sup_id, context)
print(f"Concept '{concept}' collapsed to '{collapsed}' in given context")
if __name__ == "__main__":
asyncio.run(demonstrate_agi())