|
|
import asyncio |
|
|
import numpy as np |
|
|
from datetime import datetime |
|
|
from typing import Dict, List, Any, Optional, Tuple |
|
|
import hashlib |
|
|
import logging |
|
|
from enum import Enum |
|
|
import json |
|
|
import math |
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class CognitiveDomain(str, Enum): |
|
|
PERCEPTION = "perception" |
|
|
REASONING = "reasoning" |
|
|
MEMORY = "memory" |
|
|
LEARNING = "learning" |
|
|
DECISION_MAKING = "decision_making" |
|
|
CREATIVITY = "creativity" |
|
|
|
|
|
class NeuralArchitecture: |
|
|
"""Core neural network architecture simulating cognitive processes""" |
|
|
def __init__(self, domain: CognitiveDomain): |
|
|
self.domain = domain |
|
|
self.weights = self.initialize_weights() |
|
|
self.knowledge_graph = {} |
|
|
|
|
|
def initialize_weights(self) -> Dict[str, float]: |
|
|
"""Initialize neural weights based on cognitive domain""" |
|
|
base_weights = { |
|
|
'input_gain': np.random.uniform(0.7, 1.0), |
|
|
'association_strength': np.random.uniform(0.5, 0.9), |
|
|
'memory_decay': 0.05, |
|
|
'learning_rate': 0.1 |
|
|
} |
|
|
|
|
|
|
|
|
if self.domain == CognitiveDomain.REASONING: |
|
|
base_weights.update({'logic_coeff': 0.8, 'uncertainty_threshold': 0.3}) |
|
|
elif self.domain == CognitiveDomain.LEARNING: |
|
|
base_weights.update({'plasticity': 0.9, 'consolidation_factor': 0.75}) |
|
|
|
|
|
return base_weights |
|
|
|
|
|
def process_input(self, input_data: Any) -> Dict: |
|
|
"""Core cognitive processing function""" |
|
|
processed = { |
|
|
'input_hash': hashlib.sha256(str(input_data).encode()).hexdigest(), |
|
|
'domain': self.domain.value, |
|
|
'timestamp': datetime.utcnow().isoformat(), |
|
|
'significance': self.calculate_significance(input_data) |
|
|
} |
|
|
self.update_knowledge_graph(processed) |
|
|
return processed |
|
|
|
|
|
def calculate_significance(self, input_data: Any) -> float: |
|
|
"""Calculate the significance of input based on cognitive weights""" |
|
|
complexity = len(str(input_data)) / 1000 |
|
|
novelty = 1.0 - min(1.0, self.knowledge_graph.get('similarity_index', 0.0)) |
|
|
return self.weights['input_gain'] * (complexity + novelty) / 2 |
|
|
|
|
|
def update_knowledge_graph(self, processed: Dict): |
|
|
"""Update the system's knowledge representation""" |
|
|
node_id = processed['input_hash'][:12] |
|
|
self.knowledge_graph[node_id] = { |
|
|
'content': processed, |
|
|
'connections': self.find_semantic_connections(processed), |
|
|
'last_accessed': datetime.utcnow() |
|
|
} |
|
|
|
|
|
def find_semantic_connections(self, processed: Dict) -> List[str]: |
|
|
"""Discover relationships with existing knowledge""" |
|
|
return [k for k, v in self.knowledge_graph.items() |
|
|
if v['content']['domain'] == processed['domain']] |
|
|
|
|
|
class UnifiedIntelligenceFramework: |
|
|
"""Advanced AGI system integrating multiple cognitive domains""" |
|
|
|
|
|
def __init__(self): |
|
|
self.cognitive_modules = { |
|
|
domain: NeuralArchitecture(domain) |
|
|
for domain in CognitiveDomain |
|
|
} |
|
|
self.consciousness_thread = None |
|
|
self.global_state = { |
|
|
'activation_level': 0.5, |
|
|
'attention_focus': CognitiveDomain.REASONING, |
|
|
'learning_mode': 'consolidation' |
|
|
} |
|
|
|
|
|
async def cognitive_loop(self): |
|
|
"""Main processing loop simulating continuous cognition""" |
|
|
while True: |
|
|
|
|
|
self.adjust_attention() |
|
|
|
|
|
|
|
|
await self.cross_module_synchronization() |
|
|
|
|
|
|
|
|
self.adaptive_reweighting() |
|
|
|
|
|
await asyncio.sleep(0.1) |
|
|
|
|
|
def adjust_attention(self): |
|
|
"""Dynamically shift focus based on system state""" |
|
|
if self.global_state['activation_level'] > 0.7: |
|
|
self.global_state['attention_focus'] = CognitiveDomain.DECISION_MAKING |
|
|
elif self.global_state['activation_level'] < 0.3: |
|
|
self.global_state['attention_focus'] = CognitiveDomain.MEMORY |
|
|
|
|
|
async def cross_module_synchronization(self): |
|
|
"""Facilitate information exchange between cognitive domains""" |
|
|
active_module = self.cognitive_modules[self.global_state['attention_focus']] |
|
|
shared_data = active_module.knowledge_graph |
|
|
|
|
|
for domain, module in self.cognitive_modules.items(): |
|
|
if domain != self.global_state['attention_focus']: |
|
|
await self.integrate_knowledge(module, shared_data) |
|
|
|
|
|
async def integrate_knowledge(self, target_module: NeuralArchitecture, knowledge: Dict): |
|
|
"""Asynchronously integrate knowledge across domains""" |
|
|
|
|
|
await asyncio.sleep(0.01 * len(knowledge)) |
|
|
|
|
|
for node_id, node_data in knowledge.items(): |
|
|
if node_id not in target_module.knowledge_graph: |
|
|
target_module.knowledge_graph[node_id] = node_data |
|
|
logger.info(f"Knowledge integrated into {target_module.domain.value}") |
|
|
|
|
|
def adaptive_reweighting(self): |
|
|
"""Modify neural weights based on system performance""" |
|
|
for module in self.cognitive_modules.values(): |
|
|
|
|
|
if self.global_state['activation_level'] > 0.6: |
|
|
module.weights['learning_rate'] = min(1.0, module.weights['learning_rate'] * 1.1) |
|
|
|
|
|
|
|
|
for node_id, node_data in module.knowledge_graph.items(): |
|
|
if node_data['content']['significance'] > 0.7: |
|
|
module.weights['association_strength'] = min( |
|
|
0.95, module.weights['association_strength'] * 1.05 |
|
|
) |
|
|
|
|
|
def process_input(self, input_data: Any, domain: CognitiveDomain) -> Dict: |
|
|
"""High-level input processing interface""" |
|
|
self.global_state['activation_level'] = min(1.0, self.global_state['activation_level'] + 0.1) |
|
|
return self.cognitive_modules[domain].process_input(input_data) |
|
|
|
|
|
def start_cognition(self): |
|
|
"""Activate the AGI system""" |
|
|
if not self.consciousness_thread or self.consciousness_thread.done(): |
|
|
self.consciousness_thread = asyncio.create_task(self.cognitive_loop()) |
|
|
|
|
|
def get_system_state(self) -> Dict: |
|
|
"""Return current state of the AGI framework""" |
|
|
return { |
|
|
'modules': {domain.value: { |
|
|
'node_count': len(module.knowledge_graph), |
|
|
'activation': module.weights['association_strength'] |
|
|
} for domain, module in self.cognitive_modules.items()}, |
|
|
'global_state': self.global_state, |
|
|
'knowledge_volume': sum(len(m.knowledge_graph) for m in self.cognitive_modules.values()) |
|
|
} |
|
|
|
|
|
|
|
|
class QuantumCognition: |
|
|
"""Simulate quantum-like properties in cognition""" |
|
|
|
|
|
def __init__(self, agi_system: UnifiedIntelligenceFramework): |
|
|
self.agi = agi_system |
|
|
self.superposition_states = {} |
|
|
self.entanglement_map = {} |
|
|
|
|
|
def create_superposition(self, concept: str, states: List[Any]): |
|
|
"""Establish conceptual superposition""" |
|
|
state_hash = hashlib.sha256(concept.encode()).hexdigest()[:8] |
|
|
self.superposition_states[state_hash] = { |
|
|
'concept': concept, |
|
|
'possible_states': states, |
|
|
'probability_vector': [1/len(states)] * len(states) |
|
|
} |
|
|
return state_hash |
|
|
|
|
|
def collapse_state(self, state_hash: str, context: Dict) -> Any: |
|
|
"""Collapse superposition based on cognitive context""" |
|
|
if state_hash not in self.superposition_states: |
|
|
return None |
|
|
|
|
|
state = self.superposition_states[state_hash] |
|
|
context_factor = self.calculate_context_influence(context) |
|
|
|
|
|
|
|
|
adjusted_probs = [p * context_factor for p in state['probability_vector']] |
|
|
total = sum(adjusted_probs) |
|
|
normalized_probs = [p/total for p in adjusted_probs] |
|
|
|
|
|
|
|
|
return np.random.choice(state['possible_states'], p=normalized_probs) |
|
|
|
|
|
def calculate_context_influence(self, context: Dict) -> float: |
|
|
"""Determine how context affects probability distribution""" |
|
|
relevance = min(1.0, len(context) / 10) |
|
|
agi_activation = self.agi.global_state['activation_level'] |
|
|
return 0.5 + (relevance * agi_activation) / 2 |
|
|
|
|
|
def create_entanglement(self, concept_a: str, concept_b: str): |
|
|
"""Establish quantum-like entanglement between concepts""" |
|
|
ent_id = f"{concept_a[:4]}-{concept_b[:4]}" |
|
|
self.entanglement_map[ent_id] = { |
|
|
'concepts': (concept_a, concept_b), |
|
|
'correlation_strength': 0.75, |
|
|
'last_utilized': datetime.utcnow() |
|
|
} |
|
|
return ent_id |
|
|
|
|
|
|
|
|
async def demonstrate_agi(): |
|
|
print("Initializing Advanced AGI Framework...") |
|
|
agi_system = UnifiedIntelligenceFramework() |
|
|
agi_system.start_cognition() |
|
|
|
|
|
print("\nProcessing multi-domain inputs:") |
|
|
|
|
|
visual_input = "A red triangle moving quickly to the right" |
|
|
agi_system.process_input(visual_input, CognitiveDomain.PERCEPTION) |
|
|
|
|
|
|
|
|
problem = "Solve climate change through technological innovation" |
|
|
result = agi_system.process_input(problem, CognitiveDomain.REASONING) |
|
|
print(f"Reasoning result: {result['input_hash']} | Significance: {result['significance']:.2f}") |
|
|
|
|
|
|
|
|
await asyncio.sleep(0.2) |
|
|
state = agi_system.get_system_state() |
|
|
print("\nSystem State:") |
|
|
print(f"Global Activation: {state['global_state']['activation_level']:.2f}") |
|
|
print(f"Knowledge Nodes: {state['knowledge_volume']}") |
|
|
print(f"Attention Focus: {state['global_state']['attention_focus'].value}") |
|
|
|
|
|
|
|
|
print("\nActivating Quantum Cognition:") |
|
|
quantum = QuantumCognition(agi_system) |
|
|
concept = "democracy" |
|
|
states = ["representative", "direct", "deliberative", "liquid"] |
|
|
sup_id = quantum.create_superposition(concept, states) |
|
|
|
|
|
context = {"political_context": "crisis", "time_constraint": "high"} |
|
|
collapsed = quantum.collapse_state(sup_id, context) |
|
|
print(f"Concept '{concept}' collapsed to '{collapsed}' in given context") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
asyncio.run(demonstrate_agi()) |