Arabic BERT Hate Speech Detection

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2 for Arabic hate speech detection.

Model Description

  • Base Model: aubmindlab/bert-base-arabertv2
  • Task: Binary text classification (Normal vs Hate Speech)
  • Language: Arabic
  • Accuracy: 84.5%

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
model_name = "Ibracadabra13/arabic-bert-hate-speech-detection"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Function to predict hate speech
def predict_hate_speech(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    
    with torch.no_grad():
        outputs = model(**inputs)
        predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
        predicted_class = torch.argmax(predictions, dim=-1).item()
        confidence = predictions[0][predicted_class].item()
    
    label_map = {0: 'Normal', 1: 'Hate Speech'}
    return {
        'prediction': label_map[predicted_class],
        'confidence': confidence,
        'is_hate_speech': predicted_class == 1
    }

# Example usage
result = predict_hate_speech("أنت حيوان حقير")
print(result)  # {'prediction': 'Hate Speech', 'confidence': 0.97, 'is_hate_speech': True}

Training Details

  • Training Data: Arabic Levantine Hate Speech Detection Dataset
  • Training Method: Fine-tuning with manual training loop
  • Epochs: 2
  • Batch Size: 4
  • Learning Rate: 2e-5
  • Optimizer: AdamW

Performance

  • Accuracy: 84.5%
  • Normal Text: 83% precision, 96% recall
  • Hate Speech: 90% precision, 65% recall

Limitations

This model is trained on a specific dataset and may not generalize well to all Arabic dialects or contexts. Use with caution in production environments.

Downloads last month
228
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Evaluation results

  • Accuracy on Arabic Levantine Hate Speech Detection
    self-reported
    0.845
  • F1 Score on Arabic Levantine Hate Speech Detection
    self-reported
    0.840