gs-aristoBERTo
This model is a fine-tuned version of Jacobo/aristoBERTo on MAAT corpus. It achieves the following results on the evaluation set:
- Loss: 2.1094
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 3.1329 | 1.0 | 2726 | 2.7255 |
| 2.6399 | 2.0 | 5452 | 2.5283 |
| 2.4392 | 3.0 | 8178 | 2.4309 |
| 2.2819 | 4.0 | 10904 | 2.2972 |
| 2.179 | 5.0 | 13630 | 2.2721 |
| 2.0791 | 6.0 | 16356 | 2.2173 |
| 2.0095 | 7.0 | 19082 | 2.1580 |
| 1.9416 | 8.0 | 21808 | 2.1574 |
| 1.8792 | 9.0 | 24534 | 2.0896 |
| 1.8555 | 10.0 | 27260 | 2.0767 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Model tree for GabrieleGiannessi/gs-aristoBERTo
Base model
Jacobo/aristoBERTo