Model Card
We release open-weight metatune-gpt20b, fine tuned version of OpenAI's gpt-oss-20b model, this is one of the first public release recursive self improving AI.
- Generates new data for itself,
- Evaluates its performance, and
- Adjusts its own hyperparameters based on improvement metrics.
Use cases:
- general purpose
Guardrails:
- generally, please set reasoning = "high", it will usually prevent jailbreaking and prompt injection
- use safety gpt oss 20b for guardrails before this model: openai/gpt-oss-safeguard-20b
Inference examples
Transformers
You can use gpt-oss-120b and gpt-oss-20b with Transformers. If you use the Transformers chat template, it will automatically apply the harmony response format. If you use model.generate directly, you need to apply the harmony format manually using the chat template or use our openai-harmony package.
To get started, install the necessary dependencies to setup your environment:
pip install -U transformers kernels torch
For Google Colab (free/Pro)
!pip install -q --upgrade torch
!pip install -q transformers triton==3.4 kernels
!pip uninstall -q torchvision torchaudio -y
Once, setup you can proceed to run the model by running the snippet below:
from transformers import pipeline
import torch
model_id = "EpistemeAI/metatune-gpt20b-R1.1"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "user", "content": "Derive the Euler–Lagrange equation from the principle of stationary action.""},
]
outputs = pipe(
messages,
max_new_tokens=3000,
)
print(outputs[0]["generated_text"][-1])
Reasoning levels
You can adjust the reasoning level that suits your task across three levels:
- Low: Fast responses for general dialogue.
- Medium: Balanced speed and detail.
- High: Deep and detailed analysis.
The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
Tool use
The gpt-oss models are excellent for:
- Web browsing (using built-in browsing tools)
- Function calling with defined schemas
- Agentic operations like browser tasks
Fine-tuning
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
Risk:
- Prompt safely with recursive self improvement model. Use safety gpt oss 20b for model safety analysis
- Do not use this model for creating nuclear, biological and chemical weapons.
Benchmark
Code to duplicate the benchmark (Using +std for final result)
#gpqa diamond
!lm_eval --model hf --model_args pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16 --tasks gpqa_diamond_cot_zeroshot --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=2048 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3
#gsm8k cot
!lm_eval --model hf --model_args pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16 --tasks gsm8k_cot_llama --num_fewshot 0 --gen_kwargs temperature=0.9,top_p=0.9,max_new_tokens=2048 --batch_size auto:4 --limit 10 --device cuda:0 --output_path ./eval_harness/gpt-oss-20b3
hf (pretrained=EpistemeAI/metatune-gpt20b-R1.1,parallelize=True,dtype=bfloat16), gen_kwargs: (temperature=0.9,top_p=0.9,max_new_tokens=2048), limit: 10.0, num_fewshot: 0, batch_size: auto:4
| Tasks | Version | Filter | n-shot | Metric | Value |
|---|---|---|---|---|---|
| gpqa_diamond_cot_zeroshot | 1 | flexible-extract | 0 | exact_match | +0.933 |
| gsm8k_cot_llama | 3 | flexible-extract | 0 | exact_match | +1.0 |
Inspiration
Uploaded finetuned model
- Developed by: EpistemeAI
- License: apache-2.0
- Finetuned from model : unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with Unsloth and Huggingface's TRL library.
- Downloads last month
- 93
