YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

1-Layer 4-Head Attention-Only Transformer

This is a simplified transformer model with 1 attention layer(s) and 4 attention head(s), hidden size 128, designed for studying attention mechanisms in isolation.

Architecture Differences from Vanilla Transformer

Removed Components:

  • No MLP/Feed-Forward layers - Only attention layers
  • No Layer Normalization - No LayerNorm before/after attention
  • No positional encoding - No position embeddings of any kind

Kept Components:

  • Token embeddings
  • Multi-head self-attention with causal masking
  • Residual connections around attention layers
  • Language modeling head (linear projection to vocabulary)

This minimal architecture isolates the attention mechanism, making it useful for mechanistic interpretability research as described in A Mathematical Framework for Transformer Circuits.

Usage

class AttentionOnlyTransformer(PreTrainedModel):
    """Attention-only transformer with configurable number of attention layers."""
    config_class = LlamaConfig

    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([AttentionLayer(config) for _ in range(config.num_hidden_layers)])
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

    def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
        batch_size, seq_len = input_ids.shape
        hidden_states = self.embed_tokens(input_ids)
        assert hidden_states.shape == (batch_size, seq_len, self.config.hidden_size)
        assert attention_mask.shape == (batch_size, seq_len)

        for layer in self.layers:
            hidden_states = layer(hidden_states, attention_mask)
            assert hidden_states.shape == (batch_size, seq_len, self.config.hidden_size)

        logits = self.lm_head(hidden_states)
        assert logits.shape == (batch_size, seq_len, self.config.vocab_size)

        loss = None
        if labels is not None:
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
            )

        return {"loss": loss, "logits": logits}


model = AttentionOnlyTransformer.from_pretrained('Butanium/simple-stories-1L4H128D-attention-only-toy-transformer')

Training Data

The model is trained on the SimpleStories dataset for next-token prediction.

Downloads last month
-
Safetensors
Model size
1.16M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support