whisper-large-v3-music-detection

This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6421
  • Accuracy: 0.7616
  • F1: 0.7462
  • Precision: 0.7670
  • Recall: 0.7616
  • F1 Pure Speech: 0.6735
  • F1 Speech With Music: 0.5
  • F1 Pure Music: 0.9697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall F1 Pure Speech F1 Speech With Music F1 Pure Music
1.0164 1.3158 100 0.9843 0.4238 0.2523 0.1796 0.4238 0.0 0.0 0.5953
0.8459 2.6316 200 0.8073 0.4238 0.2523 0.1796 0.4238 0.0 0.0 0.5953
0.6761 3.9474 300 0.6421 0.7616 0.7462 0.7670 0.7616 0.6735 0.5 0.9697

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.5.1+cu121
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Aynursusuz/whisper-large-v3-music-detection

Finetuned
(757)
this model

Evaluation results