whisper-large-v3-music-detection
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6421
- Accuracy: 0.7616
- F1: 0.7462
- Precision: 0.7670
- Recall: 0.7616
- F1 Pure Speech: 0.6735
- F1 Speech With Music: 0.5
- F1 Pure Music: 0.9697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Pure Speech | F1 Speech With Music | F1 Pure Music |
|---|---|---|---|---|---|---|---|---|---|---|
| 1.0164 | 1.3158 | 100 | 0.9843 | 0.4238 | 0.2523 | 0.1796 | 0.4238 | 0.0 | 0.0 | 0.5953 |
| 0.8459 | 2.6316 | 200 | 0.8073 | 0.4238 | 0.2523 | 0.1796 | 0.4238 | 0.0 | 0.0 | 0.5953 |
| 0.6761 | 3.9474 | 300 | 0.6421 | 0.7616 | 0.7462 | 0.7670 | 0.7616 | 0.6735 | 0.5 | 0.9697 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.5.1+cu121
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5
Model tree for Aynursusuz/whisper-large-v3-music-detection
Base model
openai/whisper-large-v3