TRIC-Trilingual Recognition of Irony with Confidence
Collection
This collections contains data and models used for the TRIC (Trilingual Recognition of Irony with Confidence) paper (under review)
•
17 items
•
Updated
This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset. It achieves the following results on the evaluation set:
This is the best-performing REGRESSION model for English irony detection. The model was fine-tuned both a mix of English and Dutch tweets. The model predicts one numerical value indicating irony likelihood, where 0 is not ironic and 6 is ironic.
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | F1 | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.7333 | 0.4630 | 100 | 1.8475 | 9.7883 | 3.1286 | 2.2877 | -0.4094 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.6952 | 0.9259 | 200 | 1.7889 | 8.8708 | 2.9784 | 2.2442 | -0.2773 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.6175 | 1.3889 | 300 | 1.6295 | 7.6123 | 2.7590 | 2.0223 | -0.0961 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.4401 | 1.8519 | 400 | 1.4962 | 6.6368 | 2.5762 | 1.8601 | 0.0444 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.2553 | 2.3148 | 500 | 1.3949 | 5.9003 | 2.4291 | 1.7518 | 0.1504 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.2296 | 2.7778 | 600 | 1.3520 | 5.9339 | 2.4360 | 1.6730 | 0.1456 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.0909 | 3.2407 | 700 | 1.2565 | 5.3251 | 2.3076 | 1.5831 | 0.2332 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 1.0031 | 3.7037 | 800 | 1.2159 | 4.7598 | 2.1817 | 1.5709 | 0.3146 | 0.4570 | 0.3669 | 0.6057 | 0.6057 |
| 0.9833 | 4.1667 | 900 | 1.1544 | 4.6141 | 2.1480 | 1.5031 | 0.3356 | 0.7296 | 0.8018 | 0.7572 | 0.7572 |
| 0.825 | 4.6296 | 1000 | 1.1512 | 5.0019 | 2.2365 | 1.4608 | 0.2798 | 0.7757 | 0.7943 | 0.7859 | 0.7859 |
| 0.8187 | 5.0926 | 1100 | 1.1150 | 4.9111 | 2.2161 | 1.4352 | 0.2928 | 0.7815 | 0.7849 | 0.7859 | 0.7859 |
| 0.7138 | 5.5556 | 1200 | 1.0724 | 4.8492 | 2.2021 | 1.3871 | 0.3018 | 0.7766 | 0.7791 | 0.7807 | 0.7807 |
| 0.6706 | 6.0185 | 1300 | 1.0560 | 4.9024 | 2.2141 | 1.3650 | 0.2941 | 0.7786 | 0.7823 | 0.7833 | 0.7833 |
| 0.6112 | 6.4815 | 1400 | 1.0594 | 5.0772 | 2.2533 | 1.3694 | 0.2689 | 0.7750 | 0.7759 | 0.7781 | 0.7781 |
| 0.5906 | 6.9444 | 1500 | 1.0611 | 5.1421 | 2.2676 | 1.3794 | 0.2596 | 0.7736 | 0.7734 | 0.7755 | 0.7755 |
| 0.5597 | 7.4074 | 1600 | 1.0286 | 5.0419 | 2.2454 | 1.3290 | 0.2740 | 0.7839 | 0.7879 | 0.7885 | 0.7885 |
| 0.5422 | 7.8704 | 1700 | 1.0531 | 5.2061 | 2.2817 | 1.3596 | 0.2504 | 0.7672 | 0.7678 | 0.7702 | 0.7702 |
| 0.5255 | 8.3333 | 1800 | 1.0478 | 5.2565 | 2.2927 | 1.3372 | 0.2431 | 0.7811 | 0.7853 | 0.7859 | 0.7859 |
| 0.5116 | 8.7963 | 1900 | 1.0544 | 5.2090 | 2.2823 | 1.3546 | 0.2500 | 0.7721 | 0.7733 | 0.7755 | 0.7755 |
| 0.5213 | 9.2593 | 2000 | 1.0423 | 5.1715 | 2.2741 | 1.3341 | 0.2554 | 0.7819 | 0.7846 | 0.7859 | 0.7859 |
| 0.4999 | 9.7222 | 2100 | 1.0566 | 5.2819 | 2.2982 | 1.3481 | 0.2395 | 0.7721 | 0.7733 | 0.7755 | 0.7755 |
Base model
vinai/bertweet-base