See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b46dd4e902cfc1e4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b46dd4e902cfc1e4_train_data.json
type:
field_input: OriginalAddress1
field_instruction: PermitTypeDesc
field_output: Description
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/8a754eb6-61c7-4a8b-8a54-e51054953379
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3081
micro_batch_size: 4
mlflow_experiment_name: /tmp/b46dd4e902cfc1e4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04141507011571371
wandb_entity: null
wandb_mode: online
wandb_name: 9f56acc4-b827-4168-93d7-573d28b9c6d6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9f56acc4-b827-4168-93d7-573d28b9c6d6
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
8a754eb6-61c7-4a8b-8a54-e51054953379
This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 3081
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 5.218 | 0.0003 | 1 | 5.2484 |
| 1.7686 | 0.0277 | 100 | 1.9123 |
| 1.8062 | 0.0553 | 200 | 1.8047 |
| 1.6583 | 0.0830 | 300 | 1.7470 |
| 1.9395 | 0.1106 | 400 | 1.7195 |
| 1.5875 | 0.1383 | 500 | 1.6879 |
| 1.6136 | 0.1659 | 600 | 1.6653 |
| 2.0235 | 0.1936 | 700 | 1.6588 |
| 1.6806 | 0.2212 | 800 | 1.6360 |
| 1.6857 | 0.2489 | 900 | 1.6220 |
| 1.5208 | 0.2765 | 1000 | 1.6051 |
| 1.4817 | 0.3042 | 1100 | 1.5931 |
| 1.6838 | 0.3318 | 1200 | 1.6109 |
| 1.4782 | 0.3595 | 1300 | 1.5708 |
| 1.465 | 0.3871 | 1400 | 1.5545 |
| 1.4195 | 0.4148 | 1500 | 1.5440 |
| 1.945 | 0.4424 | 1600 | 1.5307 |
| 1.5934 | 0.4701 | 1700 | 1.5188 |
| 1.4071 | 0.4977 | 1800 | 1.5075 |
| 1.4952 | 0.5254 | 1900 | 1.4991 |
| 1.8531 | 0.5530 | 2000 | 1.4884 |
| 1.517 | 0.5807 | 2100 | 1.4800 |
| 1.2886 | 0.6083 | 2200 | 1.4734 |
| 1.6789 | 0.6360 | 2300 | 1.4662 |
| 1.7322 | 0.6636 | 2400 | 1.4590 |
| 1.6309 | 0.6913 | 2500 | 1.4538 |
| 1.5905 | 0.7189 | 2600 | 1.4490 |
| 1.5501 | 0.7466 | 2700 | 1.4461 |
| 1.6598 | 0.7742 | 2800 | 1.4442 |
| 1.2199 | 0.8019 | 2900 | 1.4432 |
| 1.5627 | 0.8295 | 3000 | 1.4427 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/8a754eb6-61c7-4a8b-8a54-e51054953379
Base model
meta-llama/Llama-3.2-1B-Instruct
Finetuned
unsloth/Llama-3.2-1B-Instruct