twscrape-prepared-regression-NeoBERT-3epochs
This model is a fine-tuned version of chandar-lab/NeoBERT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5382
- Mse: 0.0003
- Target 0 Mse: 0.0008
- Target 0 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f15100ee7d0>
- Target 0 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f14c00f8d30>
- Target 1 Mse: 0.0003
- Target 1 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f14b80baf80>
- Target 1 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f148453fdf0>
- Target 2 Mse: 0.0000
- Target 2 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f14845e9ba0>
- Target 2 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f148460e3e0>
- Target 3 Mse: 0.0000
- Target 3 Distributions: <wandb.sdk.data_types.image.Image object at 0x7f14845e9e10>
- Target 3 Error Distribution: <wandb.sdk.data_types.image.Image object at 0x7f148439a4a0>
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Target 0 Mse | Target 0 Distributions | Target 0 Error Distribution | Target 1 Mse | Target 1 Distributions | Target 1 Error Distribution | Target 2 Mse | Target 2 Distributions | Target 2 Error Distribution | Target 3 Mse | Target 3 Distributions | Target 3 Error Distribution |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.3816 | 1.0 | 1282 | 1.4598 | 0.0003 | 0.0008 | <wandb.sdk.data_types.image.Image object at 0x7f1511421c00> | <wandb.sdk.data_types.image.Image object at 0x7f1511422b00> | 0.0003 | <wandb.sdk.data_types.image.Image object at 0x7f1521bf0910> | <wandb.sdk.data_types.image.Image object at 0x7f1521e65570> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f1521e2ff70> | <wandb.sdk.data_types.image.Image object at 0x7f151165da20> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f1521bf32b0> | <wandb.sdk.data_types.image.Image object at 0x7f151165e2c0> |
| 1.5242 | 2.0 | 2564 | 1.4238 | 0.0003 | 0.0008 | <wandb.sdk.data_types.image.Image object at 0x7f1520347850> | <wandb.sdk.data_types.image.Image object at 0x7f1520125990> | 0.0003 | <wandb.sdk.data_types.image.Image object at 0x7f14fe3a38b0> | <wandb.sdk.data_types.image.Image object at 0x7f1520347790> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f1511896ad0> | <wandb.sdk.data_types.image.Image object at 0x7f15117b0c40> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f14fe445ab0> | <wandb.sdk.data_types.image.Image object at 0x7f14fe677400> |
| 0.7842 | 3.0 | 3846 | 1.5382 | 0.0003 | 0.0008 | <wandb.sdk.data_types.image.Image object at 0x7f14fe5d4850> | <wandb.sdk.data_types.image.Image object at 0x7f151014aad0> | 0.0003 | <wandb.sdk.data_types.image.Image object at 0x7f14fe5fc8b0> | <wandb.sdk.data_types.image.Image object at 0x7f15100bfcd0> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f15100a5bd0> | <wandb.sdk.data_types.image.Image object at 0x7f14fe55a3e0> | 0.0000 | <wandb.sdk.data_types.image.Image object at 0x7f14fe1ecd90> | <wandb.sdk.data_types.image.Image object at 0x7f14fe296d40> |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.21.0
- Downloads last month
- 5
Model tree for AlekseyKorshuk/twscrape-prepared-regression-NeoBERT-3epochs
Base model
chandar-lab/NeoBERT